
REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 1 of 128

Copyright MEI © 2008, All Rights Reserved

RETAIL EBDS PROTOCOL
SPECIFICATION
(with M/POST for EBDS)

TITLE RETAIL EBDS PROTOCOL SPECIFICATION (with M/POST for EBDS)
NUMBER 20105-002850131-PS
ISSUE G2
PCN 500000008441
DATE August 11, 2008
AUTHORS Peter Camilleri

COPYRIGHT © 2008 MEI Inc

The information contained herein is the property of MEI, Inc. and is not to
be disclosed or used without the prior written permission of MEI, Inc. This
copyright extends to all the media in which this information may be
preserved including magnetic storage, punched card, paper tape,
computer printout or visual display.

While every effort has been made to ensure the accuracy and
completeness of the information in this document, MEI does not represent
that that information is free of errors or omissions. Furthermore MEI
reserves the right to update this document at any time.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 2 of 128

Copyright MEI © 2008, All Rights Reserved

Change History
Issue Date Description Author(s)
N/A March 2, 2006 Initial Draft Peter Camilleri
N/A June 26, 2007 Continuing Work In Progress Peter Camilleri
N/A July 9, 2007 Continuing Work In Progress Peter Camilleri

N/A July 13, 2007 Added chapter for EBDS section of the MEI Point of
Service Toolkit (M/POST). Peter Camilleri

N/A July 24, 2007 First complete draft. Peter Camilleri

N/A July 27, 2007
Added sections for bindings for ActiveX, LINUX,
.NET and JAVA to be filled in at a later time. Added
Quick reference and Hex/Binary Conversion tables

Peter Camilleri

N/A Aug 23, 2007 Updated the introduction to cover M/POST.
Added warning about the loopback failure mode. Peter Camilleri

N/A Sept 10, 2007 Added some brief notes on .NET bindings and the
recommended handling of events. Peter Camilleri

N/A Sept 19, 2007

Updated QueryDeviceCapabilities command. Added
QueryBNFStatus, QueryAcceptorApplicationID, and
QueryAcceptorVariantID commands. Also added
CapBNFStatus, BNFStatus, CapApplicationID,
ApplicationID, CapVariantID, VariantID and
CapTestDoc properties to M/POST

Peter Camilleri

N/A Oct 31, 2007 Added the DebugLogPath property and a section for
the M/POST demo program. Peter Camilleri

N/A Nov 12, 2007 Added VB.NET Event handling section. Added an
errata entry to the BillTypeEnables property details. Peter Camilleri

N/A Nov 16, 2007
Corrected the model id values for Zt1200 US and
the entries for the bill tables associated with those
tables.

Peter Camilleri

N/A Nov 28, 2007 Incorporated Dave McLaughlin’s comments Peter Camilleri
N/A Jan 7, 2008 Added the OLE bindings section Peter Camilleri
N/A Jan 9, 2008 Added table clarifying message type 7x usage. Peter Camilleri
N/A Jan 10, 2008 Added an ASCII conversion table. Peter Camilleri
N/A Jan 22, 2008 Added the Set Bezel command. Peter Camilleri

N/A Jan 29, 2008 Updated the Set Bezel command.
Updated descriptions of the M/POST demo. Peter Camilleri

N/A Feb 22, 2008
Clarified the intent of unused (0) bits in commands
and replies. Updated the SetExpandedNoteInhibits
command to indicate the two possible replies.

Peter Camilleri

N/A Feb 25, 2008 Documented the alternate sequence for determining
Device Capabilities. Peter Camilleri

N/A April 4, 2008 Updated reply time-outs to allow for USB links. Peter Camilleri
N/A April 18, 2008 Added preliminary Linux bindings information. Peter Camilleri
N/A April 23, 2008 Added PID and VID settings for USB connections. Peter Camilleri
G1 May 13, 2008 First release. Peter Camilleri
G2 August 11, 2008 Updated with data for the Bunch Note Feeder Peter Camilleri

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 3 of 128

Copyright MEI © 2008, All Rights Reserved

Table of Contents
1. Introduction__ 7

1.1 Scope ___7

1.2 Recommendation/Warning Icons__8

1.3 Product Icons __8

1.4 Varieties of EBDS __9

2. A Protocol Overview __ 10

3. The Physical Layer ___ 11
3.1 RS-232___11

3.2 RS-485___11

3.3 Optically Isolated__11

3.4 USB ___11
3.4.1. USB Device Identifiers __12

4. The Data Link Layer__ 13
4.1 Data Packet Construction ___13

4.1.1 More about STX/ETX and the CHK __13

4.2 Normal (Polled) Mode__13
4.2.1 Normal Mode Timing ___14

4.3 Special (Interrupt) Mode ___14
4.3.1 Special Mode Timing__15
4.3.2 ABDS and Special (Interrupt) Mode __15
4.3.3 Flash Download and Special (Interrupt) Mode __15

4.4 Receiving a reply __16
4.4.1 Loopback Error Handling __17

4.5 ACK/NAK Processing __17
4.5.1 ACK/NAK Examples: ___18
4.5.2 ACK/NAK Timing Requirements __19

5. The Network Layer ___ 20
5.1 Device Type Message Routing ___20

5.2 ABDS Message Routing __21
5.2.1 ABDS Timing Requirements__22
5.2.2 ABDS and Special (Interrupt) Mode __22

6. The Session Layer __ 23
6.1 Variations in Power Up reporting __23

6.2 Starting in Download mode ___23

6.2 Ending the Session___24

7. The Presentation Layer (for Bill Acceptor) ____________________________________ 25
7.1 The Omnibus Command__25

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 4 of 128

Copyright MEI © 2008, All Rights Reserved

7.1.1 Omnibus Command ___26
7.1.2 Standard Omnibus Reply___29
7.1.3 Extended Omnibus Bar Code Reply __33
7.1.4 Extended Omnibus Expanded Note Reply__33
7.1.5 Extended Omnibus Expanded Coupon Reply ___36

7.2 The Calibrate Command ___37

7.3 The Download Firmware Command __38
7.3.1 The pace of communications during download. ___38
7.3.2 Overview of the Flash Download Process __38
7.3.3 Download Flow Diagram___40

7.4 The Auxiliary Commands___42
7.4.1 Query Software CRC__42
7.4.2 Query Cash Box Total ___43
7.4.3 Query Device Resets __44
7.4.4 Clear Cash Box Total__45
7.4.5 Query Acceptor Type__45
7.4.6 Query Acceptor Serial Number __46
7.4.7 Query Acceptor Boot Part Number ___48
7.4.8 Query Acceptor Application Part Number__48
7.4.9 Query Acceptor Variant Name __49
7.4.10 Query Acceptor Variant Part Number __50
7.4.11 Query Acceptor Audit Life Time Totals __51
7.4.12 Query Acceptor Audit QP Measures ___53
7.4.13 Query Acceptor Audit Performance Measures ___54
7.4.14 Query Device Capabilities ___56
7.4.15 Query Acceptor Application ID___57
7.4.16 Query Acceptor Variant ID __58
7.4.17 Query BNF Status ___59
7.4.18 Set Bezel __59
7.4.19 Acceptor Soft Reset __60

7.5 The Extended Commands___61
7.5.1 Query Expanded Note Specification __61
7.5.2 Set Expanded Note Inhibits ___63
7.5.3 Set Escrow Timeout___64
7.5.4 Set Asset Number __65
7.5.5 Query Value Table__65
7.5.6 Set Extended PUP Mode ___66

7.6 Processing States __67
7.6.1 Processing States in Non-escrow Mode__68
7.6.2 Processing States in Escrow Mode ___69

8. The Application Layer (for Bill Acceptor) _____________________________________ 70
8.1 Application Startup Tasks __70

8.2 Application Currency Handling__71
8.2.1 Handling Money in Terse Mode:___71
8.2.2 Handling Money in Expanded Mode: ___71
8.2.3 Recommended money handling flowchart: ___72
8.2.4 Controlling the orientation of accepted bills:__73
8.2.5 Improved control of the orientation in expanded mode: ___________________________________74

8.3 Determining the Firmware Version___74
8.3.1 Firmware Version in Classic EBDS: __74

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 5 of 128

Copyright MEI © 2008, All Rights Reserved

8.3.2 Firmware Version in Extended EBDS: __75

8.4 Handling Acceptor Exceptions ___75
8.4.1 Bill Acceptor does not respond to a poll:___75
8.4.2 Bill Acceptor does not respond for an extended period: _____________________________________75
8.4.3 Bill Acceptor Status: Cheated ___75
8.4.4 Bill Acceptor Status: Rejected___76
8.4.5 Bill Acceptor Status: Jammed ___76
8.4.6 Bill Acceptor Status: Stacker Full __76
8.4.7 Bill Acceptor Status: Cashbox Removed___76
8.4.8 Bill Acceptor Status: Paused __76
8.4.9 Bill Acceptor Status: Calibration in Progress ___76
8.4.10 Bill Acceptor Status: Power Up___77
8.4.11 Bill Acceptor Status: Invalid Command __77
8.4.12 Bill Acceptor Status: Failure ___77
8.4.13 Bill Acceptor Status: Stalled ___77
8.4.14 Bill Acceptor Status: Flash Download__77

9. MEI Point of Service Toolkit (M/POST) ______________________________________ 78
9.1 M/POST for EBDS Overview: ___78

9.1.1 M/POST for EBDS Acceptor Properties: __78
9.1.2 M/POST for EBDS Bill Properties:___80
9.1.3 M/POST for EBDS Coupon Properties: __80
9.1.4 M/POST for EBDS DocType Enumeration: __80
9.1.5 M/POST for EBDS Orientation Enumeration: ___81
9.1.6 M/POST for EBDS OrientationCtl Enumeration: _______________________________________81
9.1.7 M/POST for EBDS PowerUp Enumeration: ___81
9.1.8 M/POST for EBDS PupExt Enumeration: ___81
9.1.9 M/POST for EBDS State Enumeration: ___81
9.1.10 M/POST for EBDS BNFStatus Enumeration: ___81
9.1.11 M/POST for EBDS Bezel Enumeration: __82
9.1.12 M/POST for EBDS Acceptor Methods:__82
9.1.13 M/POST for EBDS Acceptor Events:__82
9.1.14 M/POST for EBDS Acceptor Properties Details: ___83
9.1.15 M/POST for EBDS Acceptor Methods Details: ___94
9.1.16 M/POST for EBDS Acceptor Events Details: ___97

10. M/POST Bindings for ActiveX ___ 101
10.1 Connecting to the M/POST DLL ___101

10.2 Handling Events in Visual Basic 6 __101

10.3 Differences from the M/POST model ___102

10.4 A note on array index values. __103

10.5 A note on Boolean property values. ___103

11. M/POST Bindings for .NET ___ 104
11.1 Connecting to the M/POST DLL ___104

11.2 Handling M/POST Events in C# ___105

11.3 Handling M/POST Events in VB.NET __106

12. M/POST Bindings for Linux __ 107
12.1. Using the MPOST_Linux Library __107

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 6 of 128

Copyright MEI © 2008, All Rights Reserved

12.2. Handling M/POST Events in Linux___107

12.3. MPOST Linux Demo Program___108

13. M/POST Bindings for JAVA __ 109

14. The M/POST Demo Program __ 110
14.1 The Launcher___110

14.2 The Control Panel ___111
14.2.1 The Main Tab ___112
14.2.2 The Capabilities Tab __115
14.2.3 The Properties Tab__115
14.2.4 The Bill Set Tab__118
14.2.5 The Bill Values Tab___119
14.2.6 The Device Info Tab __120

15. Device Harness and Connection__ 121
15.1 EBDS Harness Options for the Series 2000 Bill Acceptor: __________________________121

14.1.1 Custom Harness Design for the Series 2000 Bill Acceptor: ________________________________121

15.2 EBDS Harness Options for the Cashflow-SC Bill Acceptor:_________________________122
14.2.1 RS-232 Harness Configuration:__122
15.2.2 USB Harness Configuration: __123

15.3 Legacy, Series (ZT) 1000 Harness Options ______________________________________124

15.4 Legacy, Series 3000 Harness Options ___124

16. Quick Reference __ 127

17. Hex/Binary and ASCII Data Conversion___________________________________ 128

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 7 of 128

Copyright MEI © 2008, All Rights Reserved

1. Introduction
1.1 Scope

The scope of this document is to specify the EBDS protocol with the goal of making it easier to
incorporate EBDS devices into business solutions. To this end, the intended audiences of this
document are host system software developers, technical support specialists and system
integrators.

Firstly, to serve this group better, this document employs a structured approach based on the
OSI networking model. This model has proven to be a solid base for the implementation of
device to device communications of all sorts.

Secondly, this document will focus on the needs of developers in the retail, kiosk, self-check-
out and cash-drop markets.

Thirdly, this document serves to document the MEI / Point Of Service Toolkit (M/POST). This
tool supports EBDS and greatly reduces the effort required to implement an EBDS host. Users
of M/POST may wish to skip directly to section 9 and refer to earlier sections as needed.

Finally, this document will examine EBDS as used in the following Retail products:

Family Model Variants
Series 2000 AE2600 US, Australia, Canada,

AE2800 US, Argentina, Brazil

Cashflow SC SC-66 Flexible variants
SC-83 Flexible variants
SC-85 Special UK product

The following legacy products are also discussed to aid in the host code migration process:

Family Model Variants Description
Series 1000 ZT1200 US, Australia, Canada Discontinued products

Series 2000 AE2600 US Earlier model hardware.

Series 3000 LE, RS, EX US, Australia Discontinued products

Cashflow SC SC-66 US, Australia Earlier version software.

In all cases, MEI advises that the best operation of cash devices is obtained when they are
loaded with the most current firmware for that product.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 8 of 128

Copyright MEI © 2008, All Rights Reserved

The recommended migration paths from older products to newer is illustrated below:

ZT1200
USA

ZT1200
Canada

Series
3000

Cashflow
SC-66

Cashflow
SC-83

Series
2000

ZT1200
Australia

NEW
International
Applications

NEW
High End US
Applications

NEW
Low End US
Applications

1.2 Recommendation/Warning Icons
The following warning icons will be used to highlight best practices and potential problem areas.

Recommended A feature that is recommended as a “best” practice.

Non-Retail A feature that is not suitable for retail applications.

Incompatible Features that are incompatible or mutually exclusive.

Deprecated A feature that is no longer recommended.

Obsolete A feature that used to be supported but is no longer. In general,
any features or commands so marked should be avoided.

1.3 Product Icons
Some features of EBDS are specific to or vary by the product implementing them. To indicate
this, the following icons are used:

S1K All series 1000 retail products (ZT120x)

S2K All series 2000 retail products (AE2600, AE2800)

Gen2D Series 2000, AE2800 and newer AE2600 US products.

Gen2B/C Older Series 2000 AE2600 US products.

S3K All series 3000 products (LE/RS/EX).

CFSC All Cashflow-SC retail products.

BNF A Cashflow-SC with the Bunch Note Feeder Option

CFMC Cashflow SC-66 retail products with older software.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 9 of 128

Copyright MEI © 2008, All Rights Reserved

1.4 Varieties of EBDS
The EBDS protocol has evolved over time. As it has changed, the naming of the versions has
also changed. The family tree of EBDS is illustrated below.

BDS

EBDS ABDS

EBDS
Plus

Acronym Meaning
BDS BiDirectional Serial Protocol Obsolete

EBDS Enhanced BiDirectional Serial Protocol
ABDS Addressable BiDirectional Serial Protocol

EBDS Plus Enhanced BiDirectional Serial Protocol Plus

 The BDS protocol is no longer supported on any current cash handling products. This
protocol is discussed here only to extent needed to point out migration issues.

 The EBDS protocol is widely used on Series 2000 as well as legacy Series 1000, 3000 and
older SC-66 models.

 The ABDS protocol is supported by Series 3000 and the Cashflow-SC with the RS-485
option installed. This protocol allows multiple cash acceptors to be connected to a single,
multi-drop, host port.

 EBDS Plus is similar to EBDS with the additional option of extended note reporting and
several command-oriented extensions to the original omnibus command packet.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 10 of 128

Copyright MEI © 2008, All Rights Reserved

2. A Protocol Overview
The ISO OSI Network Model is used to describe networks of all sorts and a Computer
connected to an EBDS device is no exception. This is illustrated in the following layered
breakdown of a connection to such a device.

Layer Host
Computer Units of Transmission EBDS

Device
7 Application Actions/Events Application

6 Presentation Commands/Responses Presentation

5 Session Messages Session

4 Transport Messages Transport

3 Network Packets Network

2 Data Link Frames Data Link

1 Physical Bits Physical

Interconnecting Medium

The purpose of these layers is explained below:

Layer Description

Application This is the high level software on the computer and
the functionality of the device.

Presentation The command/response layer that interacts with the
application.

Session
This level deals with multiple interactions between the
computer and the device. In EBDS this corresponds
to power up/down and application start/finish.

Transport
The break up and recombination of larger
transactions into smaller packets. In most cases,
EBDS transactions fit inside a single packet.

Network Network address and routing used to guide the packet
to the correct destination

Data Link The collection of many bits into a meaning unit or
packet, including error detection.

Physical The voltage/current and timing for a single bit in a
frame.

Interconnecting
Medium

The connectors and wires/transmission medium of the
connection.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 11 of 128

Copyright MEI © 2008, All Rights Reserved

3. The Physical Layer
Data in EBDS is transmitted using asynchronous data bytes. These may be formatted as:

9600bps, 7 data bits, even parity, one stop bit
1200bps, 7 data bits, even parity, one stop bit Obsolete

The EBDS protocols support a number of different types of physical layers. These are laid out
below:

3.1 RS-232
The RS-232 interface is supported across all products. It should be noted though that some
products require the use of an adapter harness to be used in this mode. EBDS uses the
minimum, three wire, configuration (GND, TXD, RXD) with no handshaking lines. The data
transmission across the line corresponds to the EIA RS-232 spec, which is not repeated here.
The formal specification may be found in ITU-T Recommendation (formally CCITT
Recommendation) V.24. A more useful, if less formal specification may be found at the
Wikipedia web site under the topic RS-232.

3.2 RS-485
The RS-485 interface is a specialized interface used to support the multi-drop features of the
ABDS protocol. It is supported by the RS-485 interface adapter harness of the Series 3000 and
by the Cashflow-SC with the RS-485 Interface Board option. When RS-485 is utilized, all
communications occur over a single balanced pair data line in a true half-duplex mode. No
handshaking lines are utilized.

3.3 Optically Isolated
Non-Retail This interface type utilizes optically isolated drivers. To maintain isolation, the
ground reference and power required by the host side of the connection must all be supplied by
the host. The optically isolated interface is not normally used in retail applications. However,
this interface may find application in cases where the host system is physically remote from the
device in an electronically noisy environment.

3.4 USB
The EBDS protocol may also be embedded inside the USB virtual communications port
protocol. This may be accomplished with an RS-232 Virtual Com Port Cable or through the use
of the appropriate harness (for Series 2000) or interface board (for Cashflow-SC). No
handshake lines are utilized.

The protocol layers involved in embedding EBDS in USB are covered in publicly available USB
specs and are not covered in this document.

Incompatible Some USB Virtual Com Cables do not support the data transfer parameters
required by EBDS (9600, 7, E, 1). These cables will not work with an EBDS device. In addition,
some of these cables introduce delays that may disrupt some EBDS operations.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 12 of 128

Copyright MEI © 2008, All Rights Reserved

3.4.1. USB Device Identifiers

Normally, MEI devices that utilize a USB connection are supplied with an installation program
that sets up the required devices drivers and settings. Under embedded systems or some
operating systems, this is not the case and the systems integrator will need to configure the
drivers manually.

To assist in manual configuration, the following table sets out the crucial USB parameters for
various MEI products:

Device Vendor ID for MEI
(VID)

Product ID for device
(PID)

Cashflow-SC or Cashflow-
SCL, models 6628 or
8328.

0x1100

Series 2000 models
AE2800 or AE2600 with
optional USB harness kit.

0x0BED

0x1101

For further information on drivers, please see the Silicon Laboratories web site at:
http://www.silabs.com/ and look up virtual communications drivers for the CP2102. For WinCE

hosts, a custom integration with the USBXpress development kit will be required.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 13 of 128

Copyright MEI © 2008, All Rights Reserved

4. The Data Link Layer
4.1 Data Packet Construction

Data packets, whether from the host or the device, are laid out according to the following plan:

Byte 1 2 3 4 .. L-2 L-1 L

Name

Value

Len CTL Data Bytes ETX CHK

0x02 L n n .. n 0x03 n

STX

Packet Payload

Bytes covered by CHKStart Stop

Where:

STX The ASCII STX character. Hexadecimal value 0x02. The start of a packet.
Len The count of all of the bytes in the packet.

CTL Byte A mix of the ACK/NAK field, a reserved area, and the command area.
Data Bytes The data bytes of the packet. This is Len-5 bytes worth.

ETX The ASCII ETX character. Hexadecimal value 0x03. The end of a packet.
Checksum The XOR checksum of bytes 2 through Len-2.

4.1.1 More about STX/ETX and the CHK
It is very important to realize that the values used for STX and ETX, namely 0x02 and 0x03 are
NOT unique within the packet structure. It is possible (if unlikely) for any of the data bytes or the
check byte to be of these values. Thus the host code must not be written to always start a
packet when a 0x02 is encountered or end one when a 0x03 in found. Instead, the length byte
should be used to determine when a packet ends and the timeout when it is lost.

The data link layer can be operated in one of two modes, Normal Mode or Special Mode.

4.2 Normal (Polled) Mode
In normal mode, EBDS operates as a standard host/peripheral system with all transactions
initiated by the host and only replies generated by the peripheral. All communications take
place in packets that follow the rules in section 3.1.

In polled mode, the host system is responsible for running transactions to accomplish three
goals:

1) Sending any commands the host needs to set the peripheral to the correct mode.
2) Giving the peripheral the chance to inform the host of any events that may require

attention by the host.
3) Assuring the peripheral that the host is still functioning correctly and that it is OK to

accept money from the customers.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 14 of 128

Copyright MEI © 2008, All Rights Reserved

4.2.1 Normal Mode Timing

Parameter Lower
Limit

Upper
Limit Description

Inter-character
Timing 0ms 20ms

If the maximum inter-character time is
exceeded, the receiver of the packet
should discard the current packet and
resume its search for an STX character.

Peripheral
Response Time 0ms 35ms

If the peripheral device has not started to
respond within this amount of time after a
packet is sent to it, the host should
assume that no reply is going to be sent by
the peripheral.

50ms 1s
This is the rate at which the host should
communicate with the peripheral. The
recommended polling interval is 200ms.

Polling Interval

50ms 250ms
BNF When a bunch note feeder is
installed, a higher polling rate is required
to maintain system performance.

Peripheral
Disable Timeout 3s -

If the peripheral does not receive a poll
from the host within this time period, it will
be disabled to avoid continuing to accept
money on a system with a disabled host.

4.3 Special (Interrupt) Mode

Deprecated

In special mode, EBDS adds a facility for the peripheral device to request that the host perform
a poll operation. The host is still responsible for running transactions to:

1) Sending any commands the host needs to set the peripheral to the correct mode.
2) Assuring the peripheral that the host is still functioning correctly and that it is OK to

accept money from the customers.

When the Peripheral detects an event that requires host attention, it sends a single ENQ
(0x05). The ENQ character will never be sent while a reply is being sent, but it can be sent
while a host command is being sent. When the host receives the ENQ, it should poll the
peripheral.

Note that while events usually follow a certain order, it is unwise to assume that certain events
will always follow in a predictable manner. Thus each ENQ should be treated as if any or even
no event could have been the trigger.

In addition, the host code must be written with the awareness that an ENQ can be sent at any
time, without regard for other EBDS activity. For example, the device could send an ENQ in the
middle of the host sending a command.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 15 of 128

Copyright MEI © 2008, All Rights Reserved

4.3.1 Special Mode Timing

Parameter Lower
Limit

Upper
Limit Description

Inter-character
Timing 0ms 20ms

If the maximum inter-character time is
exceeded, the receiver of the packet
should discard the current packet and
resume its search for an STX character.

Peripheral
Response Time 0ms 35ms

If the peripheral device has not started
to respond within this amount of time
after a packet is sent to it, the host
should assume that no reply is going to
be sent by the peripheral.

Polling Interval 50ms 30s
This is the rate at which the host should
communicate with the peripheral. The
recommended polling interval is 1s.

Peripheral
Disable Timeout 33s -

If the peripheral does not receive a poll
from the host within this time period, it
will be disabled to avoid continuing to
accept money on a system with a
disabled host.

ENQ Response
Time 0ms 100ms

If the host does not respond to the ENQ
within the required time, the peripheral
will retry sending the ENQ.

ENQ Response
Timeout 3s -

If an ENQ is sent and the host does not
reply by this limit, the peripheral will be
disabled to avoid continuing to accept
money on a system with a disabled
host.

The commands used to control the data link layer modes are covered in section 7.1.1

4.3.2 ABDS and Special (Interrupt) Mode
Incompatible

Special Mode may not be used in a system where ABDS (see section 5.2) is in use. This is due
to the fact that multiple devices could all try to send an ENQ character at the same time and the
result would be data corruption. The half-duplex, multi-drop character of the RS-485 physical
layer of ABDS makes it incompatible with special (interrupt) mode.

4.3.3 Flash Download and Special (Interrupt) Mode
Incompatible

Special Mode may not be used in conjunction with the Flash Download protocols (see section
7.3). If the ability to update device firmware via EBDS is desired, then Special Mode should not
be employed.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 16 of 128

Copyright MEI © 2008, All Rights Reserved

4.4 Receiving a reply

The following is a state transition diagram for host code to receive a reply packet. This model
embodies the best known practices for this task.

START

Other

LENGTH
(L)

STX

Begin
Get Reply

GATHER
BYTES

Count < L-1

CHECK
SUM

(Count = L-1) and ETX

Done
Good Reply

Done
Bad Reply

(Count = L-1) and Other

Good Checksum

Bad Checksum

50ms Reply Timeout

20ms
Intercharacter

Timeout

Use 200ms in
Download mode.
See section 7.3

Reply Packet Receive State Diagram

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 17 of 128

Copyright MEI © 2008, All Rights Reserved

4.4.1 Loopback Error Handling
Under some conditions, the host may encounter a fault in which data sent to the device is
echoed or looped back to the host. To handle this, the host should mark as bad, any packet
that exactly matches the packet that was sent by the host to the device. Reliably detecting this
sort of error will reduce all sorts of issues in the field. The author speaks from personal
experience in regards to this matter.

4.5 ACK/NAK Processing
In an EBDS transaction either side may decide to acknowledge the transfer by sending an
ACK, or to deny acknowledgment by sending a NAK. This information is transmitted in the
control byte. The control byte is laid out as follows:

6 5 4 3 2 1 0

Control Byte - Bits

ACK/NAK bit

Device Type

Message Type

The ACK/NAK functionality is embedded in the matching of the bit sent by the host, compared
with the bit sent by the device. In general, host systems indicate an ACK by toggling their
ACK/NAK bit between transactions, and indicate a NAK by using the same value twice in a row.
Devices indicate an ACK by matching the host’s ACK/NAK bit and a NAK by returning a value
different from the host’s ACK/NAK bit.

This is illustrated in the next section.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 18 of 128

Copyright MEI © 2008, All Rights Reserved

4.5.1 ACK/NAK Examples:

Under normal circumstances, the host
alternates the value of the ACK bit in
the control byte sent to the device and
the device returns a matching value in
its ACK bit in the reply. This is
illustrated in this example:

Host Device

0

1

0

1

0

0

Sometimes, the device is unable to
respond to the host command. In these
cases, the host resends the command
with the same ACK value. This is
illustrated in the first example.

Older devices are more prone to this
scenario as they have less processing
“power”, however all devices will from
time to time be unable to respond to a
host packet. The host system should
retry the command. See the “Non-
acknowledge Timeout” parameter in
section 4.5.2 for details.

Note: This case is equivalent to the
cases where either the host command
or device reply is lost in transit.

Host Device

0

0

1

1

1

Timeout

Retry

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 19 of 128

Copyright MEI © 2008, All Rights Reserved

In this example, the device is not ready
to process the packet and explicitly
sends a NAK to indicate this to the host.
The host then retries and the command
is accepted.

Note: This case also occurs during flash
download where a simple retry is NOT
sufficient. See section 7.3 for more
details.

Host Device

0

0

0

1

1

1

NAK

Retry

4.5.2 ACK/NAK Timing Requirements

In general, an ACK to a response can wait until the next scheduled poll and no special timing is
required. A NAK however is subject to a special limit. Under some conditions, the host must
NAK the device in fewer than 100ms to ensure the device does not proceed with money
processing. If more than 100ms elapse, the device will proceed on the assumption that the host
ACK is on its way. Since there is not way to be certain when these conditions exist the following
spec applies to all NAK replies:

Parameter Lower
Limit

Upper
Limit Description

Initial NAK
Response Time 50ms 100ms

When a NAK condition is detected, the
host should communicate with the
peripheral in less than 100ms.

Following NAK
Response Time 50ms 3s If subsequent NAKs are required, this

more relaxed timing may be used.

Non-acknowledge
Timeout 3s

If a device does not eventually respond,
the host should consider the device to
be out of service.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 20 of 128

Copyright MEI © 2008, All Rights Reserved

5. The Network Layer
This section discusses the parts of the EBDS protocol that deal with the routing of packets to
the correct device. There are two protocols for doing this: Device Type Routing a (proposed)
protocol for routing based on the type of device and ABDS, a extension to EBDS to support
multi-drop connection of multiple bill acceptors to a single host port.

5.1 Device Type Message Routing

From its inception, EBDS has been a protocol used to control bill acceptors. Over the years, the
need has existed to support different types of transaction hardware (such as coin acceptors,
smart card readers, and bill recyclers) with EBDS. This proposed protocol extension would
allow for new device types to be added with harm to any existing host code.

Device type message routing is a method of sending commands to different sorts of devices in
a single system. Packets sent by the host are sent to specific types of devices. Devices ignore
messages not addressed to them. In reply packets, devices transmit their device type back to
the host for confirmation.

The device routing of EBDS is encoded by the control byte. The device type field in this byte is
used to identify the type of device intended to receive a command and to identify the type of
device generating the reply.

6 5 4 3 2 1 0

Control Byte - Bits

ACK/NAK bit

Device Type

Message Type

The Device Type field of the control byte is decoded as follows:

Bit 3 Bit 2 Bit 1 Value Description
0 0 0 0 Bill Acceptor with single escrow.
0 0 1 1 Reserved for Future Usage.
0 1 0 2 Reserved for Future Usage.
0 1 1 3 Reserved for Future Usage.
1 0 0 4 Reserved for Future Usage.
1 0 1 5 Reserved for Future Usage.
1 1 0 6 Reserved for Future Usage.
1 1 1 7 Reserved for Future Usage.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 21 of 128

Copyright MEI © 2008, All Rights Reserved

Device type message routing does not imply that the devices are connected in a multi-drop bus
as in ABDS. In general, the host will have to determine the type of device connected to each
port. This is done by attempting communications with the different device types starting with 0
and proceeding upward until a device responds. Once a device responds, the host should
validate the device type in the response field to confirm the type of device attached.

5.2 ABDS Message Routing
CFSC S3K

The ABDS message routing protocol is designed to handle multiple bill acceptors on a single,
multi-drop, RS-485 data line. In theory, up to 31 devices can be attached to a single line,
however, in practice far fewer (typically 2 through 5) are feasible. The RS-485 physical layer is
required because it is the only interface that supports the required multi-drop capability. While
still a current interface, ABDS routing is considered an older approach. In more modern
systems, multiple bill acceptors are best accommodated with USB connections.

The number of allowed devices is limited by the need to poll all of the units in the chain in a
timely manner. For example, if a polling rate of 200ms is desired then the maximum number of
devices that can be attached is 200ms/50ms or about 4.

ABDS is an extension of EBDS that is identified by the use of specially laid out packets. The
design of these packets for the host and the device are illustrated below.

The format of an ABDS command from the host is:

9Byte 1 2 3 4 .. 6 7 8

Name

Value

Len CTL Data Bytes ADR ETX

0x02 0x09 n n .. n a 0x03

STX

Packet Payload

Bytes covered by CHKStart Stop

CHK

n

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 22 of 128

Copyright MEI © 2008, All Rights Reserved

The format of an ABDS response from the device is:

12Byte 1 2 3 4 .. 9 10 11

Name

Value

Len CTL Data Bytes ADR ETX

0x02 0x0C n n .. n a 0x03

STX

Packet Payload

Bytes covered by CHKStart Stop

CHK

n

Where:

ADR The address of the device. (1..31, 0x01..0x1F). This corresponds to the
binary address value set in the device’s DIP switches.

5.2.1 ABDS Timing Requirements

Since ABDS is implemented on a shared RS-485 bus, it is necessary to control which party has
its bus “drivers” turned on. To avoid bus conflicts, the bus driver must be turned on no more
than 1ms before transmission begins and must be turned off no later than 1ms after the
transmission is completed.

Parameter Lower
Limit

Upper
Limit Description

Bus Driver Turn-
On Lead Time 0 1ms

The RS-485 Drivers must be turned on
before data can be sent, but must not
be turned on more than 1 ms before the
start of data transmission.

Bus Driver Turn
Off Hold Time 0 1ms

The RS-485 Drivers must not be turned
off before the end of data transmission,
but they must be off by no more than
1ms later.

5.2.2 ABDS and Special (Interrupt) Mode
Incompatible

Special Mode may not be used in a system where ABDS is in use. This is due to the fact that
multiple devices could all try to send an ENQ character at the same time and the result would
be data corruption. The half-duplex, multi-drop character of the RS-485 physical layer of ABDS
makes it incompatible with special (interrupt) mode.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 23 of 128

Copyright MEI © 2008, All Rights Reserved

6. The Session Layer
In EBDS there is no concept of a login or logout or other such concepts normally associated
with a session layer. None the less, session management is crucial to proper handling of the
customer’s money. In general, a session begins when the host program initiates
communications with the device and ends when that communications is terminated. This is
complicated by the fact that the host and the device may not be in synch. One can be shut
down without the other being affected:

The application is responsible for handling its own start-up and shutdown issues. The device
informs the application of its session status through the power-up event. When the host detects
this event, it should handle session start issues with the bill acceptor. So far, all attempts to
have the device send a power-down event after power-loss have been without success.

The control of the power up of the bill acceptor is detailed in section 8.1.

6.1 Variations in Power Up reporting

There exist in the field, two separate methods for a bill acceptor device to report that a start-up
event has been detected:

S1K CFMC CFSC

These devices continue to report the power-up status until the host has completed dealing with
any banknotes that may have been in the unit at the time.

S2K S3K

These devices report the power-up event until they are ready to process commands from the
host.

It will be noted that these two approaches are incompatible and that the host code can either:

 Code for the power up response of the devices attached to the host.
 Based on the device connected apply the appropriate algorithm.
 Wait up to three seconds for the power-up status to clear before proceeding to issue

commands to the bill acceptor.

6.2 Starting in Download mode

It is possible that the device will be in flash download mode on startup. There are a number of
ways that this may transpire:

• The device may be a blank unit, simply lacking in application code.
• The host may have been downloading code to the unit, and while doing so, the host was

reset, rebooted or restarted. The device is still in download mode.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 24 of 128

Copyright MEI © 2008, All Rights Reserved

• The host may have been downloading code to the unit, and while doing so, the entire
system was powered down. The device is still in download mode.

When this occurs, the host has two distinct courses of action. It can:

1. Go out of service. This is the course of action expected from hosts that do not support flash
download of the device.

2. Resume download of the device firmware. To facilitate this, the host should store the path
and filename of the device firmware file in non-volatile storage so that it may be accessed if
the session opens in download mode.

For more information on download mode and detecting download mode please see sections
7.1.2 and 7.3.

6.2 Ending the Session

When the host system prepares to terminate operations, it should ensure that the device is
placed into a safe mode so that does not continue to operate without an application or retain
currency after the application closes. To this end, the application should ensure that:

• Any currency currently in process (escrow) is returned to the consumer.
• The device is fully disabled so that no further currency will be accepted.

See sections 7, 8, and 9 for further details on the commands used to accomplish this.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 25 of 128

Copyright MEI © 2008, All Rights Reserved

7. The Presentation Layer (for Bill Acceptor)
The presentation layer of EBDS is specific to each type of device being supported. At present,
only a bill acceptor device with a single note escrow is defined in EBDS.

The presentation layer of the bill acceptor is driven from the message type field in the control
byte. This three-bit field determines how the packet is processed.

6 5 4 3 2 1 0

Control Byte - Bits

ACK/NAK bit

Device Type

Message Type

Bit 6 Bit 5 Bit 4 Value When sent by the host When sent by the device
0 0 0 0 Reserved Reserved
0 x 1 1/3 Omnibus Command Not Used
0 1 0 2 Not Used Omnibus Reply
1 0 0 4 Calibrate Request Calibrate Reply
1 0 1 5 Firmware Download Request Firmware Download Reply
1 1 0 6 Auxiliary Command Request Auxiliary Command Reply

1 1 1 7 Extended Commands Extended Command Reply or
Extended Omnibus Reply

7.1 The Omnibus Command

Omnibus, adj.:
Including or covering many things or classes: an omnibus trade bill.

The concept behind the omnibus command is simple. The host sends a packet with virtually
everything needed to control a bill acceptor to the device, and the device responds with a
packet with virtually everything needed by the host. Thus in theory, only one command is
needed. In practice, the sophistication of the command set long ago reached the point where it
was not feasible to fit in all the data all the time. Thus the auxiliary and extended commands
were created. Despite this, the omnibus command remains the very core of EBDS and the most
frequently used command. When one speaks of “polling” the bill acceptor, it is this command
that is being referred too.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 26 of 128

Copyright MEI © 2008, All Rights Reserved

7.1.1 Omnibus Command
The layout of an omnibus command from the host is (STX, Length=0x08, ETX, and CHK
omitted):

Byte 3 4

Name

Value

CTL Data 0

1x/3x nn

5 6

Data 1

nn

Data 2

nn

Omnibus Command – CTL Byte
Bit # Name Value Description

0 ACK X ACK/NAK value. See section 4.5 for details.
1 - 0 Must be 0
2 - 0 Must be 0
3 - 0 Must be 0
4 - 1 Must be 1

Non-Retail . A bookmark is a piece of paper stacked by the acceptor
as an event marker in the cash box. For example a dispute with the
customer. In some applications, especially those with lockable
cassettes it may not be feasible to examine the cash box immediately.
A bookmark may be used to mark the spot of the dispute for later
examination.

 CFSC : The dimensions of the bookmark are 2.6” by 4”
 S1K , S2K , S3K , CFMC : The dimensions of the bookmark are

2.6” by 5”
0 Disabled. Recommended.

5 Bookmark

1

Enabled. Warning: Leaving bookmark enabled may cause
folded bank notes to be treated as bookmarks resulting in lost
credit to the customer. In addition, some currencies have
valid bank notes that are very close in dimension to a
bookmark. This raises the risk of a valid note being “stolen”.

6 - 0 Must be 0

Omnibus Command – Data Byte 0 (Terse Note Reporting)
Bit # Name Value Description

0 Disable Denomination n
0
1
2
3
4
5
6

Denom1
Denom2
Denom3
Denom4
Denom5
Denom6
Denom7

1 Enable Denomination n

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 27 of 128

Copyright MEI © 2008, All Rights Reserved

Omnibus Command – Data Byte 0 (Expanded Note Reporting)
Bit # Name Value Description

0x00 All bills are disabled.0..6 Bills Other Bills are enabled based on the extended note enable settings.

Note that denominations may also be disabled through the configuration of the bill acceptor (by
either configuration coupon or on some models, “DIP” switches). In that case, the bill will
remain disabled, even if the EBDS command to enable is sent.

Omnibus Command – Data Byte 1
Bit # Name Value Description

Data Link Layer mode control. See sections 4.2 and 4.3 for details on
Normal (Polled) mode and Special (Interrupt) modes.

0 Normal (Polled) Mode. Recommended.0 Special
Mode

1 Special (Interrupt) Mode. Deprecated
This field controls the validation criteria are applied to bank notes.

0 Accept bills in high acceptance mode. Recommended.1 High Security
1 Accept bills in high security mode. Note that acceptance of

valid notes may suffer.
This field controls the acceptance of bank notes based on the
orientation of those notes as they enter the bill acceptor. Note that bill
orientations can also be controlled by a configuration coupon or on
some models, “DIP” switches. In all cases, the most accommodating
of the settings is used. See sections 8.2.4 and 8.2.5 for more details
on controlling the orientation of bill acceptance.

00 1-way: Accept bills fed right edge first, face up only.
01 2-way: Accept bills fed face up only.

2..3 Orientation
Control

1x 4-way: Accept bills fed any way.
This mode determines how bills are handled after the bills have been
validated. Note that bills that are unable to be validated are always
rejected.

0

Escrow Mode is disabled. (Non-escrow mode) Deprecated
When the bill acceptor validates a bill, it immediately stacks
the note in the cash box. The host only receives notification
when the note is stacked.4 Escrow

Mode

1

Escrow Mode is enabled. Recommended.
When the bill acceptor validates a bill, it informs the host of
the bill by sending an escrow event. The host then decides if
the bill should be stacked or returned to the consumer. See
section 8.2.3 for best practices in bill handling.

0 No operation.

5 Bill Stack
Command 1

If a bill is in escrow, stack it in the cash box. Note that this
command is only valid if Escrow mode is enabled and a bill is
in escrow. This command and the Bill Return command are
mutually exclusive.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 28 of 128

Copyright MEI © 2008, All Rights Reserved

0 No operation.

6 Bill Return
Command 1

If a bill is in escrow, return it to the consumer. Note that this
command is only valid if Escrow mode is enabled and a bill is
in escrow. This command and the Bill Stack command are
mutually exclusive.

Omnibus Command – Data Byte 2
Bit # Name Value Description

S2K , S3K : There are times when the bill acceptor is unable to give
credit for a note due to a problem in transporting the bill, and the bill
cannot be returned to the customer. In these cases, this bit determines
how such bills should be handled.

0
Push non-credit notes into the stacker and continue operating.
Recommended.

0 NoPush
Mode

1

Do not push non-credit notes. Stall the bill acceptor with the
note still in the bill path. A manager/technician level
intervention is required. In most retail applications, taking the
system out-of-service is not a desirable option.

Non-Retail , S1K , CFMC , CFSC . A bar-coded voucher is a
document with a unique bar-coded identity number encoded into it.
These identity numbers are referenced against an external database
by the host to determine the validity and value of the voucher.
Notes: Bar code vouchers must be inserted “face up”. Bar coded
vouchers can only be processed if Escrow mode is enabled.

0 Bar-coded vouchers are disabled.

1 Bar Code

1
Bar-coded vouchers are enabled. Bar coded vouchers are
reported to the host via the Expanded Omnibus Bar Code
Reply packets. See section 7.1.3 for details.

S1K , CHMC , CFSC . These bits are used to control the behavior of
the bill acceptor when a bill is found in the bill path during power up.
See section 6.1 for more information on power up issues.

Bill Position Pre-
Escrow Escrow Post-Escrow

00 Power Up Policy – A: Return
bill

Wait for
host with
unknown

value.

Stack with
unknown value.

01 Power Up Policy – B: Return
bill

Go out of
service

Stack with note
actual value.

10 Power Up Policy – C: Return
bill

Go out of
service

Stack with
unknown value.

2
3

PUP-B
PUP-C

11 Reserved. - - -

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 29 of 128

Copyright MEI © 2008, All Rights Reserved

There are two methods of reporting the value of banknotes
validated/stacked by the bill acceptor. For more details on handling
bill values see section 8.2.

0

Use terse note reporting. Notes are reported as the generic
Denom1 though 7.

 Bills are enable/disabled via the Denom1 through Denom7
bits in Omnibus Command – Byte 0

 Bills are reported to the host via the three bit
Denomination field in Omnibus Reply – Byte 2.4

Expanded
Note

Reporting

1

CFSC Use expanded note reporting.
 All bills may be disabled via the Bills field in Omnibus

Command – Byte 0.
 Bills are enabled/disabled via the Set Note Inhibits

command. See section 7.5.2 below for details.
 Bills are reported to the host via the Expanded Omnibus

Bill Reply packets. See section 7.1.4 for details.

0
No special handling of generic coupons. MEI™ Generic
Coupons (if supported) are reported the same as a bank note
of the same value. Free vend coupons are not supported.

5
Expanded
Coupon

Reporting 1

S2K-US , Enable detailed reporting of MEI™ Generic
Coupons. The host receives details on the type and
identification of generic coupons fed into the bill acceptor. See
section 7.1.5 for details.

6 Reserved 0 Currently 0, RFU

7.1.2 Standard Omnibus Reply
The most common reply to an Omnibus Command is the standard reply. However, if either bar
coded vouchers or extended note reporting are enabled, then other reply formats are possible.
See sections 7.1.3 and 7.1.4 for details on these replies respectively.

The standard reply to an omnibus command take the following form (STX, Length=0x0B, ETX,
and CHK omitted).

Byte 3 4

Name

Value

CTL Data 0

2n nn

5 6

Data 1

nn

Data 2

nn

7

Data 3

nn

8

Data 4

nn

9

Data 5

nn

The CTL byte conveys no data beyond identifying the type of reply and is not further examined.

Data byte 0 is used to describe the current state or activity of the bill acceptor. This is
accomplished through a bit map of events, states and conditions, listed below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 30 of 128

Copyright MEI © 2008, All Rights Reserved

Omnibus Reply – Data Byte 0
Bit # Name Value Description

0 Idling 1 The bill acceptor is idling between bill transactions.
1 Accepting 1 The bill acceptor is drawing in a bill.

2 Escrowed
Event 1 There is a valid bill in escrow.

3 Stacking 1 The bill acceptor is stacking a bill.

4 Stacked
Event 1 The bill acceptor has stacked a bill.

5 Returning 1 The bill acceptor is returning a bill to the customer.

6 Returned
Event 1 The bill acceptor has returned a bill to the customer.

There are a few points that bear further examination.
 If all seven bits are 0, then the bill acceptor is out of service.
 All of the bits ending in “ing” are transient status conditions. That means that depending on

polling rate, bill feed rate, or just plain luck, these states may or may not be “seen” by the
host system. That is why the use of these bits to drive any host actions is deprecated .

Omnibus Reply – Data Byte 1
Bit # Name Value Description

0 Cheated 1

The unit has detected conditions consistent with an attempt to
defraud the system. This may also occur when there is a
problem transporting the bill to the cash box. MEI does not
offer a method to set / test cheat events.

1 Rejected 1 The document presented to the bill acceptor could not be
validated and was returned to the customer.

0 The bill path is clear.
2 Jammed 1 The bill path is blocked and the bill acceptor has been unable

to resolve the issue. Intervention is required.
0 Normal operation

3 Stacker Full 1 The cash box is full of bank notes and no more may be
accepted. Intervention is required.

0 The cash box has been removed. No bills may be accepted.4 Cassette
Attached 1 The cash box is attached to the unit.

5 Paused 1
S2K , S3K . The customer is attempting to feed another note
while the previous note is still being processed. The customer
must remove the note to permit processing to continue.

It is possible to field calibrate bill acceptors. In general, due to
advances in processes used in manufacturing and continuous self-
calibration, this is not needed. Calibrating a unit with an incorrect
document will greatly reduce performance. For more information on
field calibration please refer to section 7.2

0 Normal operation

6 Calibration in
progress

1 The unit is in calibration mode. Intervention is required to feed
a special calibration document into the bill acceptor.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 31 of 128

Copyright MEI © 2008, All Rights Reserved

Omnibus Reply – Data Byte 2
Bit # Name Value Description

0 Power Up 1
The bill acceptor has been powered up. The host must deal
with any notes in escrow, and reinitialize the bill acceptor to
the desired operating settings.

1 Invalid
Command 1 The bill acceptor received an invalid command.

2 Failure 1 The bill acceptor has encountered a problem and is out of
service. Intervention is required.

The terse bill value field. This field is valid when the bill acceptor is in
terse mode and either the escrow or stacked bits are set. (See
Omnibus Reply – Data Byte 0 for details of those events)

000

Unknown/No credit. This condition is returned for a wide
variety of reasons:

 When a bookmark is either escrowed or stacked.
 When a bar coded voucher is escrowed or stacked.
 When a cheated or jammed document is stacked.
 When a jammed document is returned to the consumer.
 In extended note mode, a note is in escrow or stacked.
 On power up or cash box install when the unit performs a

“run & stack” action.
001 Denom1 – Typically $1
010 Denom2 – Typically $2
011 Denom3 – Typically $5
100 Denom4 – Typically $10
101 Denom5 – Typically $20
110 Denom6 – Typically $50

3..5 Bill Value

111 Denom7 – Typically $100
6 - 0 Currently 0, RFU

Omnibus Reply – Data Byte 3
Bit # Name Value Description

0 Stalled 1 The bill acceptor is stalled (in NoPush mode), with a bank
note still in the bill path.

1 Flash
Download 1 A flash download is ready to commence. The host may begin

send download records. See section 7.3 and @ for details.

2 Pre-stack 1
Non-Retail , Deprecated . This bit indicates that the bill has
reached a point in the stacking process where it can no longer
be retrieved.

0 24 character barcodes will be converted to 18 character
barcodes.3 Raw

Barcode 1 24 character barcodes will not be converted to 18 character
barcodes.

0 The Query Device Capabilities command is not supported. (*1)4 Device Caps 1 The Query Device Capabilities command is supported.
5 - 0 Currently 0, RFU
6 - 0 Currently 0, RFU

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 32 of 128

Copyright MEI © 2008, All Rights Reserved

Note: On some implementations of EBDS, the Device Caps bit is suppressed to maintain
compatibility with non-compliant host systems. See section 7.4.14 for more details.

Omnibus Reply – Data Byte 4
Bit # Name Value Description

0..6 Model
Number nn A value that represent the model of the bill acceptor. This is

interpreted in the tables below.

Series 1000 Hex Decimal ASCII Product
0x01 1 Discontinued, ZT1000, US
0x0C 12 Discontinued, ZT1107, US
0x0F 15 Discontinued, ZT1200, Australia
0x14 20 Obsolete, ZT1200, US

Series 2000 Hex Decimal ASCII Product
0x41 65 A AE2600 Gen2D, Australia
0x42 66 B AE2800 Gen2D, Russia
0x43 67 C AE2600 Gen2D, Canada
0x44 68 D AE2800 Gen2D, Euro
0x45 69 E Reserved (VN2300 US Economy)
0x46 70 F Reserved (VN2600 Gen2B & 2D, China)
0x47 71 G Reserved (AE2800 Gen2D, Argentina)
0x4D 77 M AE2800 Gen2D, Mexico
0x50 80 P AE2600 Gen2B, C and D, US Premium
0x51 81 Q Discontinued, Philippines
0x57 87 W AE2800 Gen2D, Brazil
0x58 88 X AE2800 Gen2D, US Expanded

Series 3000 Hex Decimal ASCII Product
0x1E 30 Discontinued, Series 3000 VFX (BDS)
0x1F 31 Obsolete, Series 3000 EBDS

Casflow SC Hex Decimal ASCII Product
0x4A 74 J Discontinued, Cashflow SC 66, Monolithic Code
0x54 84 T Cashflow SC 83, Split Component/Extended Notes
0x55 85 U Cashflow SC 66, Split Component/Extended Notes

Omnibus Reply – Data Byte 5
Bit # Name Value Description

0..6 Code
Revision nn

The version number of the firmware code in the bill acceptor.
This may be coded as:

 S1K , S3K , CFMC , CFSC : A seven bit binary value
with an implied divide by 10. (versions 0.0 through 12.7)

 S2K : A 1 ¾ digit BCD value with an implied divide by 10.
(versions 0.0 through 7.9).

Note that in general, the version number of the code is not sufficient to identify that software.
This because different software parts use independent version numbers. Version numbers are

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 33 of 128

Copyright MEI © 2008, All Rights Reserved

only useful for comparing firmware from the same software part. See section 8.3 for more
details on determining the software in a unit.

7.1.3 Extended Omnibus Bar Code Reply
S1K CFMC CFSC Non-Retail

If bar coded vouchers are enabled, then the bill acceptor will send this reply when a bar-coded
voucher is in escrow. This reply contains an additional 28 bytes of ASCII encoded decimal bar
code data. Data 0 through Data 5 are interpreted just as in the standard response detailed in
section 7.1.2. This data ends when the first 0x28, ASCII “(“ character occurs. The following is
the layout of this packet (STX, Length=0x28, ETX, and CHK omitted):

7 8 95Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Data 5

nn

11

Ext Data 0

nn

12

Ext Data 1

nn

38

Ext Data 27

nn
o o o

Sub Type

0x01

10

A typical data payload for an 18 digit bar-coded voucher might be encoded as:

012345678901234567((((((((((

It is then the responsibility of the host system to determine what (if any) value to assign to this
voucher. The host must command the bill acceptor to either stack or return the voucher. It is
important to note that when the voucher is stacked, a standard omnibus reply with a terse bill
value of unknown is sent by the bill acceptor. Thus, the only chance the host system has to
capture the bar coded data is when the voucher is at escrow.

Note: On some retail versions of the Cashflow-SC product line, support for Bar Coded
documents has been removed.

7.1.4 Extended Omnibus Expanded Note Reply
CFSC

If expanded note reporting is enabled then the bill acceptor will send this reply when a bank
note is in escrow or is stacked. The reply contains 18 additional bytes of data that describe the
bank note in great detail. Data 0 through Data 5 are interpreted just as in the standard response
detailed in section 7.1.2. The following is the layout of this packet (STX, Length=0x1E, ETX,
and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 34 of 128

Copyright MEI © 2008, All Rights Reserved

5 7 8 9Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Data 5

nn

11

Ext Data 0

nn

12

Ext Data 1

nn

28

Ext Data 17

nn
o o o

Sub Type

0x02

10

The extended bill data is described below:

Field Byte
Offset Field Description Sample Value

(2000 Yen Note)
Index 0 Not used for escrow or stacked notes 0x00

ISO Code 1..3 A three character ASCII currency code. See
ISO 4217 for details “JPY”

Base Value 4..6 A three character ASCII coded decimal value “002”

Sign 7 An ASCII coded sign value for the Exponent.
This field is either a “+” or a “-“ “+”

Exponent 8..9
ASCII coded decimal value for the power of ten
that the base is to either be multiplied by (if
Sign is “+”) or divided by (if Sign is “-“)

“03”

Orientation 10

A single character binary field that encodes the
orientation of the bill.
0x00 = Right Edge, Face Up
0x01 = Right Edge, Face Down
0x02 = Left Edge, Face Up
0x03 = Left Edge, Face Down
Note: In general, this field is only correct if the
Extended orientation bit is set in device
capabilities map. See section 7.4.14.

0x00

Type 11
An ASCII letter that documents the note type.
This corresponds to the data in the variant
identity card.

“A”

Series 12
An ASCII letter that documents the note series.
This corresponds to the data in the variant
identity card.

“A”

Compatibility 13
An ASCII letter that documents the revision of
the recognition core used. This corresponds to
the data in the variant identity card.

“B”

Version 14
An ASCII letter that documents the version of
the note’s recognition criteria. This corresponds
to the data in the variant identity card.

“A”

Reserved 15..17 3 bytes reserved for future use. N/A

In this example: Bill Value = 002 x 10+03 = 2 x 1000 = ¥2000 fed right edge first, face up.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 35 of 128

Copyright MEI © 2008, All Rights Reserved

A typical trace of the activity involved in processing a bill is illustrated below: (HOST / DEVICE)

A bill arrives at escrow (can you tell what type of bill? See the answer below)
02 08 10 7F 1C 12 03 69
02 1E 70 02 04 10 00 00 55 12 00 55 53 44 30 30
31 2B 30 30 00 43 41 42 42 00 00 00 03 65

The host commands the bill be stacked.
02 08 11 7F 3C 12 03 48
02 1E 71 02 04 10 00 00 55 12 00 55 53 44 30 30
31 2B 30 30 00 43 41 42 42 00 00 00 03 64

Stacking
02 08 10 7F 1C 12 03 69
02 0B 20 08 10 00 00 55 12 03 74

Stacking
02 08 11 7F 1C 12 03 68
02 0B 21 08 10 00 00 55 12 03 75

Stacking
02 08 10 7F 1C 12 03 69
02 0B 20 08 10 00 00 55 12 03 74

Stacking
02 08 11 7F 1C 12 03 68
02 0B 21 08 10 00 00 55 12 03 75

Stacking
02 08 10 7F 1C 12 03 69
02 0B 20 08 10 00 00 55 12 03 74

Stacked
02 08 11 7F 1C 12 03 68
02 1E 71 02 11 10 00 00 55 12 00 55 53 44 30 30
31 2B 30 30 00 43 41 42 42 00 00 00 03 71

Answer: USD $1, Right Edge, Face Up, C, A, B, B.

A special case is that of an unknown item stack in extended note mode. In this case the entire
eighteen bytes of extended note data are null or zero bytes. An example of such a packet is
shown below:

Host – Command:
02 08 10 7F 1C 12 03 69

Device – Reply:
02 1E 70 02 11 10 00 00 55 12 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 03 2A

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 36 of 128

Copyright MEI © 2008, All Rights Reserved

7.1.5 Extended Omnibus Expanded Coupon Reply
S2K-US

If expended note reporting is enabled then the bill acceptor will send this reply when a bank
note is in escrow or is stacked. The reply contains 6 additional bytes of data that describe the
coupon in detail. Data 0 through Data 5 are interpreted just as in the standard response
detailed in section 7.1.2. The following is the layout of this packet (STX, Length=0x12, ETX,
and CHK omitted):

5 7 8 9 10Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Data 5

nn

11

Coupon 1

0x0n

12

Coupon 2

0x0n

16

Fill

00

Sub Type

0x04

13

Coupon 3

0x0n

14

Coupon 4

0x0n

15

Fill

00

The coupon 1 through 4 bytes represent a 16 bit value that may extracted as follows (using “C”
style array indexing starting at 0 rather than 1).

CouponData = ((Reply[11] & 0x0F) << 12) +
 ((Reply[12] & 0x0F) << 8) +
 ((Reply[13] & 0x0F) << 4) +
 ((Reply[14] & 0x0F) + 1);

This sixteen bit value may then be further broken down as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Description
v v v 3 bit coupon value
0 0 0 Free Vend
0 0 1 $1 Coupon
0 1 0 $2 Coupon
0 1 1 $5 Coupon
1 x x Reserved

n n n n n n n n n n n n n 13 bit vendor ID

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 37 of 128

Copyright MEI © 2008, All Rights Reserved

7.2 The Calibrate Command
Deprecated

All of the bill acceptors discussed in this document have the ability to perform a field calibration
procedure. In this procedure the host issues a calibration command and a calibration document
is fed into the bill acceptor. The calibration documents are specifically designed for this purpose
and must be kept clean and unwrinkled. In particular the following must NOT be used as a
calibration document:

 Bank note currency of any sort.
 Bits of blank paper or magazine articles cut to the shape and size of a bill.
 The calibration document of a different model bill acceptor.

Modern bill acceptors contain self-calibration routines that continually adjust and tune the
recognition sub-system. Thus field calibration is seldom necessary. However, if a calibration
document is required, it should be obtained from an authorized service center.

The layout of a calibrate command from the host is (STX, Length=0x08, ETX, and CHK
omitted):

Byte 3 4

Name

Value

CTL Data 0

0x4n nn

5 6

Data 1

nn

Data 2

nn

The acceptor responds with a standard omnibus reply with a CTL value of 4x.

Byte 3 4

Name

Value

CTL Data 0

0x4n nn

5 6

Data 1

nn

Data 2

nn

7

Data 3

nn

8

Data 4

nn

9

Data 5

nn

When the acceptor is ready to begin the calibration process, it will set the Calibration bit in
Data1, Bit 6 (see section 7.1.2 Omnibus Reply – Data Byte 1). After this bit is set the host
should return to polling via the standard omnibus command (see section 7.1.1)

At this point the calibration document can be inserted into the unit. The document will be drawn
in and returned. When removed from the unit, the calibration procedure will be completed. The
acceptor will indicate that the calibration was successful by resetting itself and reporting a
power-up event (see section 7.1.2 Omnibus Reply – Data Byte 2). If the calibration fails, the
unit remains in calibration mode until manually reset.

Note: A calibrate command should not be attempted if the bill acceptor indicates that its status
is anything other than “Idling” (see section 7.1.2 Omnibus Reply – Data Byte 0).

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 38 of 128

Copyright MEI © 2008, All Rights Reserved

7.3 The Download Firmware Command
S1K Gen2D S3K CFMC CFSC

Most MEI Bill Acceptors can be upgraded with new software via the EBDS interface. Host
support of the download process allows the bill acceptor to be updated to the current code
level, without the necessity of manual intervention. The host can be remotely commanded to
upgrade the units, saving both time and money.

7.3.1 The pace of communications during download.
Download mode is somewhat different in approach than other modes. Normally, transactions
are sent at a rate that allows events from the bill acceptor to be processed without using up a
lot of bandwidth. This is not the case in download mode. In download mode, a great deal of
data needs to be sent to the bill acceptor. Thus it is expected that the host will send data as
rapidly as the protocol allows.

Another consideration however is the fact that many devices are unable to process
communications traffic while they are in the midst of programming their flash memory. To allow
for this, the response timeout for device replies should be increased from 50ms to 200ms. This
change to the receive reply algorithm is called out in section 4.4.

7.3.2 Overview of the Flash Download Process
The download process has three distinct phases: Starting, Downloading and Finishing.

Starting: The purpose of the starting phase is to get the device out of normal operation mode
and into downloading mode. This is done by first polling the unit, with a command as shown
below (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x1n 00

5 6

Data 1

00

Data 2

00

This is a standard omnibus command (as specified in section 7.1.1) with all acceptance and
options off. There are two possible responses that may occur. If the unit is not currently in
download mode, a standard omnibus reply will be sent. This is detailed in section 7.1.2. If the
unit is already in download mode, the following response will be sent (STX, Length=0x09, ETX,
and CHK omitted):

Byte 3 4

Name

Value

CTL Pkt #

0x5n 0n

5 6

Pkt #

0n

Pkt #

0n

7

Pkt #

0n

The 16 bit packet number is encoded, four bits at a time, in bytes 4 through 5 (high nibble first).
If the unit is already in downloading mode then the starting phase is completed. Otherwise it will
be necessary to place the device into downloading mode. This is accomplished with the Start

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 39 of 128

Copyright MEI © 2008, All Rights Reserved

Download command. This command is shown below (STX, Length=0x08, ETX, and CHK
omitted):

Byte 3 4

Name

Value

CTL Data 0

0x5n 00

5 6

Data 1

00

Data 2

00/10

The response to this command is (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x5n XX

5 6

Data 1

XX

Data 2

XX

7

Data 3

00/02

8

Data 4

XX

9

Data 5

XX

Where “XX” are ignored values and Data 3 contains the status of the unit. While the Flash
Download bit (see section 7.1.2) is not set, the device is not yet in download mode and the
Start Download command must be resent. When that bit is set, the unit is expecting the host to
enter the downloading phase of the download process.

Downloading: In this phase, the new code is sent to the unit and programmed into flash
memory. Starting at the start of the file, the host sends 32 byte blocks of data to the device
(Note: the file is required to by a multiple of 32 bytes longs). This is done through the Download
Data command show below (STX, Length=0x49, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Pkt #

0x5n 0n

5 6

Pkt #

0n

Pkt #

0n

7

70

Data 32 Hi

0n

71

Data 32 Lo

0n
o o o

Pkt #

0n

8

Data 1 Hi

0n

9

Data 1 Lo

0n

The reply to this command is the download in progress reply (already seen above) shown here
(STX, Length=0x09, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Pkt #

0x5n 0n

5 6

Pkt #

0n

Pkt #

0n

7

Pkt #

0n

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 40 of 128

Copyright MEI © 2008, All Rights Reserved

Crucial to the process is responding correctly to the devices ACK/NAK of the data.

• If the device ACKs the packet, the host should step to the next packet.
• If the device NAKs the packet, then the host needs to “resync” with the device. This is

accomplished by changing the block number to the value contained in the reply plus one.
This is shown below (using “C” style array indexing starting at 0 rather than 1).

ReplyBlockNum = (((Reply[3] & 0x0F) << 12) +
 ((Reply[4] & 0x0F) << 8) +
 ((Reply[5] & 0x0F) << 4) +
 ((Reply[6] & 0x0F) + 1)) & 0xFFFF;

If the device sends more than 10 consecutive NAKs, unexpected packets, checksum or other
errors, the host should abort the download process. At this point, the device is likely out of
service and intervention is required to restore normal operation.

Finishing: Once the last block of data has been sent to the device, the host must wait. There
are two phases to this wait.

In phase one (passive), the host does nothing. It simply sits idle (at least with respect to the
device being programmed) and waits. This lasts for at least fifteen seconds. After this time, the
device will have also ended the download phase and the host can begin waiting for it to reboot
and restart communications.

In phase two (active), the host slowly polls (about once a second) the device, waiting for it to
reboot. When the device responds, the download process is complete. If a normal response
was given by the device, then programming is complete and the device is ready to go back into
service. If the unit is still in download mode at this point, it means that one of two scenarios
exists:

1) The download failed for some reason. (Invalid file, Wrong kind of file, File/Device are
incompatible, Errors in communication etc)

2) In devices with multi-part flash programs, the host needs to download the next file
component of the device application. Currently on the Casflow-SC66, SC83 and SC85
products support multi-part flash (specifically two parts, Application and Variant).

7.3.3 Download Flow Diagram

The following is a flowchart summary of the download process:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 41 of 128

Copyright MEI © 2008, All Rights Reserved

In download mode

In download mode

Done

Not in download mode

Good
Reply

No Reply

Too Many Errors

ACK NAK

Begin Flash Download

Poll Bill
Acceptor

Send Start
Download

Initialize
download to the
first data block.

Special
Interrupt
Mode must
be OFF

Send
Download

Data

Block++;
Errors = 0;

Pause 200 ms
Block = ReplyBlock + 1;

Errors++;

Download Fails

Wait 60
Seconds

Poll Bill
Acceptor

Wait 1
Second

Download Succeds

Starting

Downloading

Finishing

Get
Reply
Packet

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 42 of 128

Copyright MEI © 2008, All Rights Reserved

7.4 The Auxiliary Commands
The Auxiliary Commands are used to provide functionality outside the scope of the Omnibus
command(s) in the previous sections. These commands are somewhat code-base specific and
no code base implements all of the commands, so be sure to check the compatibility icons
before each section.

All auxiliary commands take the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n X

5 6

Data B

Y

Command

Z

Where the Cmd field is the command value for the operation and Data A and Data B are
arguments to that command. The supported commands are listed below:

Data A Data B Cmd Description
0x00 0x00 0x00 Query Software CRC
0x00 0x00 0x01 Query Cash Box Total
0x00 0x00 0x02 Query Device Resets
0x00 0x00 0x03 Clear Cash Box Total
0x00 0x00 0x04 Query Acceptor Type
0x00 0x00 0x05 Query Acceptor Serial Number
0x00 0x00 0x06 Query Acceptor Boot Part Number
0x00 0x00 0x07 Query Acceptor Application Part Number
0x00 0x00 0x08 Query Acceptor Variant Name
0x00 0x00 0x09 Query Acceptor Variant Part Number
0x00 0x00 0x0A Query Acceptor Audit Life Time Totals
0x00 0x00 0x0B Query Acceptor Audit QP Measures
0x00 0x00 0x0C Query Acceptor Audit Performance Measures
0x00 0x00 0x0D Query Device Capabilities
0x00 0x00 0x0E Query Acceptor Application ID
0x00 0x00 0x0F Query Acceptor Variant ID
0x00 0x00 0x10 Query BNF Status
Bezel 0x00 0x11 Set Bezel
0x7F 0x7F 0x7F Acceptor Soft Reset

All other values are reserved for future use.

7.4.1 Query Software CRC
S1K Gen2D S3K CFMC CFSC

This command is used to query the device for the 16 bit CRC of the flash contents. The query
CRC command takes the form (STX, Length=0x08, ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 43 of 128

Copyright MEI © 2008, All Rights Reserved

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

00

The reply from the device takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n CRC

5 6

Data 1

CRC

Data 2

CRC

7

Data 3

CRC

8

Data 4

XX

9

Data 5

XX

Where the 16 bit CRC data is sent in Data 0 through Data 3, four bits at a time. This may be
extracted as shown below (using “C” style array indexing starting at 0 rather than 1).

CRC_Value = ((Reply[3] & 0x0F) << 12) +
 ((Reply[4] & 0x0F) << 8) +
 ((Reply[5] & 0x0F) << 4) +
 ((Reply[6] & 0x0F));

7.4.2 Query Cash Box Total
Gen2D

This command is used to query the amount of currency that has been counted going into the
cash box. This count, stored in non-volatile storage, is represented as a 24 bit integer, though
most hosts will store it as a 32 value. The query cash box total command takes the form (STX,
Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x01

The reply from the device takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n Data

5 6

Data 1

Data

Data 2

Data

7

Data 3

Data

8

Data 4

Data

9

Data 5

Data

Where the Total Value is sent in Data 0 through Data 5. This may be extracted as shown below
(using “C” style array indexing starting at 0 rather than 1).

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 44 of 128

Copyright MEI © 2008, All Rights Reserved

Total_Value = ((Reply[3] & 0x0F) << 20) +
 ((Reply[4] & 0x0F) << 16) +
 ((Reply[5] & 0x0F) << 12) +
 ((Reply[6] & 0x0F) << 8) +
 ((Reply[7] & 0x0F) << 4) +
 ((Reply[8] & 0x0F));

NOTE: When the cash box is removed (see section 7.1.2, Cassette Attached) it is assumed
that it is being emptied. Thus when this command is issued to the Bill Acceptor after the cash
box is restored, the bill tally shall be returned to the host and then the tally shall be set to zero
to begin counting bills in the now empty cash box.

If the host “knows” that the cash box was possibly removed while the system was off, it can use
the Clear Cash Box Total command (section 7.4.4) to clear the tally.

7.4.3 Query Device Resets
Gen2D CFSC

This command is used to query the number of times the device has been reset. This is
represented as a 24 bit integers, though most hosts will store it as a 32 value. The query device
resets command takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x02

The reply from the device takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n Data

5 6

Data 1

Data

Data 2

Data

7

Data 3

Data

8

Data 4

Data

9

Data 5

Data

Where the Reset Count is sent in Data 0 through Data 5. This may be extracted as shown
below (using “C” style array indexing starting at 0 rather than 1).

Reset_Count = ((Reply[3] & 0x0F) << 20) +
 ((Reply[4] & 0x0F) << 16) +
 ((Reply[5] & 0x0F) << 12) +
 ((Reply[6] & 0x0F) << 8) +
 ((Reply[7] & 0x0F) << 4) +
 ((Reply[8] & 0x0F));

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 45 of 128

Copyright MEI © 2008, All Rights Reserved

7.4.4 Clear Cash Box Total
Gen2D

This command is used to reset the count of bills entering the cash box. The clear cash box total
command takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x03

No data is returned to the host in the reply, shown below form (STX, Length=0x19, ETX, and
CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n 00

5 6

Data 1

00

Data 2

00

7

Data 3

00

8

Data 4

00

9

Data 5

00

7.4.5 Query Acceptor Type
CFSC

This command is used to determine the type of bill acceptor installed. The query acceptor type
command takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x04

The data returned by the device takes the form of a ASCII string that is either 20 bytes long or
is terminated by a non-printable character. The reply packet is shown below (STX,
Length=0x19, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

22

Data 18

ASCII

23

Data 19

ASCII

A great deal can be ascertained from the information returned. The following shows how this
string is encoded for Cashflow-SC products:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 46 of 128

Copyright MEI © 2008, All Rights Reserved

Product Cassette
Size

Bill Path
Width

Interface
Option Options Description

SC Cashflow-SC

<none> 600 note cassette
L 1200 note cassette
M 900 note cassette

66 66mm bill path
83 83mm bill path (International)
85 85mm bill path (UK)

01 Standard RS-485 Interface
04 Optically Isolated EBDS
07 Standard RS-232 Interface
21 Retail RS-485 Interface
27 Retail RS-232 Interface
28 Retail USB Interface

<none> None

-R Retail Kit (Hood, Slam Latch,
and Retail specific firmware)

-RB
The same as –R with the
addition of a Bunch Note
Feeder.

-RE
The same as –R with the
ability to handle notes up to
177mm long.

-RL The same as –R with the
addition of a Cassette Lock.

-RLB
The same as –R with the
addition of a Cassette Lock
and a Bunch Note Feeder.

Note: if the Recognition Unit (Head) has been replaced, it is possible that the acceptor type
string will be incorrect if the replacement unit was not of exactly the same type.

7.4.6 Query Acceptor Serial Number
CFSC

This command is used to return the serial number of the Recognition Unit (Head). The query
acceptor serial number command takes the form (STX, Length=0x08, ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 47 of 128

Copyright MEI © 2008, All Rights Reserved

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x05

The data returned by the device takes the form of a ASCII string that is either 20 bytes long or
is terminated by a non-printable character. The reply packet is shown below (STX,
Length=0x19, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

22

Data 18

ASCII

23

Data 19

ASCII

Some useful data can be ascertained from the serial number returned. The following shows
how this string is encoded for Cashflow-SC products:

Week
of

Year

Last
Digit of

Year
Location Configuration

Code
Sequential

Count Description

00..51
The number of the
week when the unit
was manufactured.

0..9
The number of the year
when the unit was
manufactured.

0..9 The site where the unit
was manufactured.

00..99 The configuration code
(build standard)

00000
through
99999

A sequential number
for units made that
week.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 48 of 128

Copyright MEI © 2008, All Rights Reserved

7.4.7 Query Acceptor Boot Part Number
CFSC

This command is used to return the software part number of the boot component of the device
firmware. The query acceptor boot part number command takes the form (STX, Length=0x08,
ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x06

The data returned by the device takes the form of a ASCII string that is 9 bytes long. The reply
packet is shown below (STX, Length=0x0E, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

11

Data 7

ASCII

12

Data 8

ASCII

The part number is laid out according to the following rules:

Prefix Project
Number

Check
Digit Version Description

28 General Software Prefix

000 .. 999 Sequential part number

0..9 Check digit.

000..999 Formatted as V1.23

Note: The boot software component is factory installed and should not be changed, adjusted or
used as a trigger/input for any host system action, function or mode.

7.4.8 Query Acceptor Application Part Number
CFSC

This command is used to return the software part number of the file containing the application
component of the device firmware. The query acceptor application part number command takes
the form (STX, Length=0x08, ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 49 of 128

Copyright MEI © 2008, All Rights Reserved

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x07

The data returned by the device takes the form of a ASCII string that is 9 bytes long. The reply
packet is shown below (STX, Length=0x0E, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

11

Data 7

ASCII

12

Data 8

ASCII

The part number is laid out according to the following rules:

Prefix Project
Number

Check
Digit Version Description

28 General Software Prefix

000 .. 999 Sequential part number.

0..9 Check digit.

000..999 Formatted as V1.23

7.4.9 Query Acceptor Variant Name
CFSC

This command is used to return the name of the variant component of the firmware. The variant
software determines which bank notes are accepted by the unit and the name of the variant,
identifies the country of origin of those bank notes. The query acceptor variant name command
takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x08

The data returned by the device takes the form of a ASCII string that is either 32 bytes long or
is terminated by a non-printable character. The reply packet is shown below (STX,
Length=0x25, ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 50 of 128

Copyright MEI © 2008, All Rights Reserved

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

34

Data 30

ASCII

35

Data 31

ASCII

The names of the currencies supported are represented as three character ISO codes. If more
than one currency is supported, they are separated by underscore “_” characters. For example
“USD_CAD” would signify a mixed U.S.A./Canadian bill set. For further information on currency
descriptors, please see http://en.wikipedia.org/wiki/ISO_4217.

7.4.10 Query Acceptor Variant Part Number
CFSC

This command is used to return the software part number of the file containing the variant
component of the device firmware. The query acceptor variant part number command takes the
form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x09

The data returned by the device takes the form of a ASCII string that is 9 bytes long. The reply
packet is shown below (STX, Length=0x0E, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

11

Data 7

ASCII

12

Data 8

ASCII

The part number is laid out according to the following rules:

Prefix Project
Number

Check
Digit Version Description

28 Combined file Software Prefix
49 Variant Software Prefix

000 .. 999 Sequential part number

0..9 Check digit.

000..999 Formatted as V1.23

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 51 of 128

Copyright MEI © 2008, All Rights Reserved

Combined Files and Application/Variant Part Numbers: It is possible to load a unit with both an
application and a variant at the same time, with one file called a combined file. In this case,
retail units shall return the part number of the combined file for both the application component
(see section 7.4.8) and the variant component. This can be deduced by the fact that the variant
and the application will have the same part number. If software components are installed
normally, the part numbers of each individual component is returned for the application and the
variant.

Non-Retail

For some versions of the non-retail Cashflow-SC product, the individual software components’
part numbers are returned regardless of how they were loaded and the combined file’s part
number is never returned.

7.4.11 Query Acceptor Audit Life Time Totals
CFSC

This command is used to return life time audit data kept on certain key operating data. The
query acceptor audit life time totals command takes the form (STX, Length=0x08, ETX, and
CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0A

This data is formatted as an array of 32-bit integers where each integer is nibble encoded as
eight extended data bytes. The data takes the following form (STX, Length=variable, ETX, and
CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 52 of 128

Copyright MEI © 2008, All Rights Reserved

o o o

Byte 3 4

Name

Value

CTL Field1.0

0x6n Data

5

Field1.1

Data

10

Field1.6

Data

11

Field1.7

Data

Similar for Field 2

o o oFieldN.0

Data

FieldN.1

Data

FieldN.6

Data

FieldN.7

Data

Similar for Field 3

Similar for Field N-1

Where the array of fields are mapped as:

Field
Number

Size in
Bytes

Data
Width Description

1 8 32

Data Map ID. The revision of data reporting in this
command, Query Acceptor Audit QP Measures and Query
Acceptor Audit Performance Measures.
1 – The initial revision.

2 8 32 Total Operating Hours
3 8 32 Total Motor Starts
4 8 32 Total Documents Reached Escrow Position
5 8 32 Total Notes Recognized
6 8 32 Total Notes Validated

The array of fields may be extracted as shown below (using “C” style array indexing starting at
0 rather than 1).

num_fields = ((Reply[1] – 5) / 8;
for (i = 0; i < num_fields; i++)
{
 Fields[i] = ((Reply[8*i + 4] & 0x0F) << 28) +
 ((Reply[8*i + 5] & 0x0F) << 24) +
 ((Reply[8*i + 6] & 0x0F) << 20) +
 ((Reply[8*i + 7] & 0x0F) << 16) +
 ((Reply[8*i + 8] & 0x0F) << 12) +
 ((Reply[8*i + 9] & 0x0F) << 8) +
 ((Reply[8*i + 10] & 0x0F) << 4) +
 ((Reply[8*i + 11] & 0x0F));
}

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 53 of 128

Copyright MEI © 2008, All Rights Reserved

Note: In theory, up to 15 data values may be returned by this command.

7.4.12 Query Acceptor Audit QP Measures
CFSC

This command is used to return “QP” audit data kept on the general rate of bill acceptance. The
query acceptor audit QP measures command takes the form (STX, Length=0x08, ETX, and
CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0B

This data is formatted as an array of 16-bit integers where each integer is nibble encoded as
four extended data bytes. The returned data takes the following form (STX, Length=Variable,
ETX, and CHK omitted):

o
o
o

Byte 3 4

Name

Value

CTL Field1.0

0x6n Data

5

Field1.1

Data

6

Field1.2

Data

7

Field1.3

Data

Similar for Field 1

FieldN.0

Data

FieldN.1

Data

FieldN.2

Data

FieldN.3

Data

Similar for Field N-1

Where the array of fields are mapped as:

Field
Number

Size in
Bytes

Data
Width Description

0 4 16 Last 100 bills acceptance rate.
1 4 16 Total Motor Starts.
2 4 16 Total Documents Stacked.
3 4 16 Total Documents Reached Escrow Position
4 4 16 Total Documents Passed Recognition

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 54 of 128

Copyright MEI © 2008, All Rights Reserved

Field
Number

Size in
Bytes

Data
Width Description

5 4 16 Total Documents Passed Validation
6 4 16 Total Recognition Rejections
7 4 16 Total Security Rejections
8 4 16 Total Orientation Disabled Rejections
9 4 16 Total Document Disabled Rejections

10 4 16 Total Fast Feed Error Rejections
11 4 16 Total Documents Inserted While Disabled
12 4 16 Total Host Return Document Rejections
13 4 16 Total Barcodes Decoded

The array of fields may be extracted as shown below (using “C” style array indexing starting at
0 rather than 1).

num_fields = (Reply[1] – 5) / 4;
for (i = 0; i < num_fields; i++)
{
 Fields[i] = ((Reply[4*i + 4] & 0x0F) << 12) +
 ((Reply[4*i + 5] & 0x0F) << 8) +
 ((Reply[4*i + 6] & 0x0F) << 4) +
 ((Reply[4*i + 7] & 0x0F));
}

Note: In theory, up to 30 data values may be returned by this command.

7.4.13 Query Acceptor Audit Performance Measures
CFSC

This command is used to return audit data kept on the basic performance of the bill acceptor
mechanism. The query acceptor audit performance measures command takes the form (STX,
Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0C

This data is formatted as an array of 16-bit integers where each integer is nibble encoded as
four extended data bytes. The returned data takes the following form (STX, Length=Variable,
ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 55 of 128

Copyright MEI © 2008, All Rights Reserved

o
o
o

Byte 3 4

Name

Value

CTL Field1.0

0x6n Data

5

Field1.1

Data

6

Field1.2

Data

7

Field1.3

Data

Similar for Field 2

FieldN.0

Data

FieldN.1

Data

FieldN.2

Data

FieldN.3

Data

Similar for Field N-1

Where the array of fields are mapped as:

Field
Number

Size in
Bytes

Data
Width Description

0 4 16 Total Cross Channel 0 Rejects
1 4 16 Total Cross Channel 1 Rejects
2 4 16 Total of All Types of Jams
3 4 16 Total Jam Recovery Efforts
4 4 16 Total Reject Attempts with Jam
5 4 16 Total Stacker Jams
6 4 16 Total number of Jams without Recovery Enabled
7 4 16 Total number of Out of Service conditions
8 4 16 Total number of Out of Order conditions
9 4 16 Total number of Operating Hours

10 4 16 Total number of documents greater than maximum
allowable length

11 4 16 Total number of documents less than minimum allowable
length

12 4 16 Total number of documents that failed to reach escrow
position

13 4 16 Total number of Calibrations
14 4 16 Total number of Resets
15 4 16 Total number of Flash Download attempts
16 4 16 Total number of Cassette Full conditions
17 4 16 Total number of Cassette Removed conditions

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 56 of 128

Copyright MEI © 2008, All Rights Reserved

The array of fields may be extracted as shown below (using “C” style array indexing starting at
0 rather than 1).

num_fields = (Reply[1] – 5) / 4;
for (i = 0; i < num_fields; i++)
{
 Fields[i] = ((Reply[4*i + 4] & 0x0F) << 12) +
 ((Reply[4*i + 5] & 0x0F) << 8) +
 ((Reply[4*i + 6] & 0x0F) << 4) +
 ((Reply[4*i + 7] & 0x0F));
}

Note: In theory, up to 30 data values may be returned by this command.

7.4.14 Query Device Capabilities

This command is used to query the device capabilities. In general, this command should only
be sent to devices that have indicated support by setting the DeviceCaps bit in a poll reply (see
section 7.1.2). However this may not always be possible. Since some hosts do not tolerate the
setting of the DeviceCaps bit, an alternate method must be found for determining device
capabilities. In this method, Query Software CRC and a Query Device Capabilities commands
are sent to the device. If the Data 0 ... Data 5 reply bytes are the same, then Query Device
Capabilities is not supported. If the results are different, then the data returned by Query Device
Capabilities may be processed. The Query Device Capabilities CRC command takes the form
(STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0D

The reply from the device takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n Cap0

5 6

Data 1

Cap1

Data 2

Cap2

7

Data 3

Cap3

8

Data 4

Cap4

9

Data 5

Cap5

The Cap bytes are used to represent various device capabilities. These are specified in the
following table:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 57 of 128

Copyright MEI © 2008, All Rights Reserved

Cap Bit Capability
0 1 = Extended PUP mode is supported.
1 1 = Extended orientation handling is supported.
2 1 = QueryAcceptorApplicationID and

 QueryAcceptorVariantID are supported.
3 1 = QueryBNFStatus is supported
4 1 = Test Documents are supported.
5 1 = Set Bezel is supported.

0

6 Reserved, 0
1 All Reserved, 0
2 All Reserved, 0
3 All Reserved, 0
4 All Reserved, 0
5 All Reserved, 0

Note that reserved fields may be used to describe new capabilities at any time. Host code
should not interrogate such reserved fields.

7.4.15 Query Acceptor Application ID
CFSC

This command is used to return the software part number of the actual application component
of the device firmware. The query acceptor application part number command takes the form
(STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0E

The data returned by the device takes the form of a ASCII string that is 9 bytes long. The reply
packet is shown below (STX, Length=0x0E, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

11

Data 7

ASCII

12

Data 8

ASCII

The part number is laid out according to the following rules:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 58 of 128

Copyright MEI © 2008, All Rights Reserved

Prefix Project
Number

Check
Digit Version Description

28 General Software Prefix

000 .. 999 Sequential part number

0..9 Check digit.

000..999 Formatted as V1.23

7.4.16 Query Acceptor Variant ID
CFSC

This command is used to return the software part number of the actual variant component of
the device firmware. The query acceptor variant part number command takes the form (STX,
Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x0F

The data returned by the device takes the form of a ASCII string that is 9 bytes long. The reply
packet is shown below (STX, Length=0x0E, ETX, and CHK omitted):

o o o

Byte 3 4

Name

Value

CTL Data 0

0x6n ASCII

5

Data 1

ASCII

11

Data 7

ASCII

12

Data 8

ASCII

The part number is laid out according to the following rules:

Prefix Project
Number

Check
Digit Version Description

28 Combined file Software Prefix
49 Variant Software Prefix

000 .. 999 Sequential part number

0..9 Check digit.

000..999 Formatted as V1.23

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 59 of 128

Copyright MEI © 2008, All Rights Reserved

7.4.17 Query BNF Status
CFSC

This command is used to determine the status of the Bunch Note Feeder attachment. This
command may only be called if the QueryBNFStatus bit is set in the device capability map (see
section 7.4.14). The command takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 00

5 6

Data B

00

Command

0x10

The reply takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n Present

5 6

Data 1

Status

Data 2

00

7

Data 3

00

8

Data 4

00

9

Data 5

00

Where:

Name Value Meaning
0 A BNF is not detected.
1 A BNF is detected.Present

Other Reserved
0 OK
1 An error has been detectedStatus

Other Reserved

7.4.18 Set Bezel
CFSC

This command is used to override the default bezel configuration of the bill acceptor bezel. This
command may only be called if the SetBezel bit is set in the device capability map (see section
7.4.14). The command takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n Bezel

5 6

Data B

00

Command

0x11

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 60 of 128

Copyright MEI © 2008, All Rights Reserved

Where the bezel value is:

Bezel Code Bezel
0x00 Standard Bezel
0x01 Platform Bezel
0x02 Enhanced Diagnostic Bezel

The reply from the device takes the form (STX, Length=0x0B, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data 0

0x6n 0x00

5 6

Data 1

0x00

Data 2

0x00

7

Data 3

0x00

8

Data 4

0x00

9

Data 5

0x00

Note: Under some conditions, the bill acceptor will perform a soft reset after this command. In
current models, this occurs when changing from a platform bezel to a different bezel. The bezel
setting is currently stored in the interface card microcontroller.

7.4.19 Acceptor Soft Reset
Gen2D S3K CFSC

This command is used to reset the bill acceptor. There is not necessarily a reply to this
command, but some data may be sent by the device. The host system should ignore all data
sent by the device for at least one second. Further, the device may take as much as fifteen
seconds to return to normal operation after being reset and the host should poll, once per
second, for at least fifteen seconds until the device replies. The acceptor soft reset command
takes the form (STX, Length=0x08, ETX, and CHK omitted):

Byte 3 4

Name

Value

CTL Data A

0x6n 0x7F

5 6

Data B

0x7F

Command

0x7F

CAUTION: The intent of this command is to permit a host system to establish an initial
condition when the software is launched. The use of the Acceptor Soft Reset command to clear
error conditions (such as jammed, failure, or cashbox full) is not recommended as this may
cause a problem to become more severe.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 61 of 128

Copyright MEI © 2008, All Rights Reserved

7.5 The Extended Commands

The extended commands utilize message type 7 to provide functionality outside that provided
by the standard omnibus commands. The use of message type 7 is complicated by the fact that
it is used for special host commands, replies to special host commands and special replies to
standard commands. To facilitate these uses, the following table is provided:

Type Sub
Type Length Host Device

0x01 0x28 Not used A Bar Code reply to the standard
command.

0x0A Query Extended Note
Specification command Not used

The reply to the Query Extended
Note Specification command0x02

0x1E Not used An Expanded Note reply to the
standard command.

0x0C Not used.
A reply to the Set Expanded Note
Inhibits for some bill acceptors.

See section 7.5.2 for details.0x03

0x11 Set Expanded Note Inhibits
command. Not used.

0x0B Set Escrow Timeout
command. Not used.

0x0C Not used. The reply to the Set Escrow
Timeout command.0x04

0x12 Not used. An Expanded Coupon reply to
the standard command.

0x0C Not used. The reply to the Set Asset
Number command.0x05

0x19 Set Asset Number
command. Not used.

0x06 Do Not Use / Reserved

0x0C Not used. The reply to the Set Extended
PUP command.

7x

0x07
0x0E Set Extended PUP

command. Not used.

Note: Lengths other than those listed in the table represent invalid packets.

7.5.1 Query Expanded Note Specification
CFSC

When expanded bank note processing is enabled, this command is used to retrieve the
specification of a note. The format of this command is shown below (STX, Length=0x0A, ETX,
and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 62 of 128

Copyright MEI © 2008, All Rights Reserved

5 7 8Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Subtype

0x02

Index

nn

Where Data 0 through Data 2 are defined the same as the similar values in the standard
omnibus command (see section 7.1.1) but do note that the position of these bytes is shifted one
position due to the presence of a subtype byte. The Index value is the index of the note to be
queried. This index ranges from 1 though to 1 beyond the last defined note. The data returned
by the bill acceptor is formatted as (STX, Length=0x1E, ETX, and CHK omitted):

5 7 8 9Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Data 5

nn

11

Ext Data 0

nn

12

Ext Data 1

nn

28

Ext Data 17

nn
o o o

Sub Type

0x02

10

The extended bill data is described below:

Field Byte
Offset Field Description Sample Value

(2000 Yen Note)

Index 0

If this is a valid bill, then the value of this byte
should match the value of the Index in the
command. If this value is zero, then the host
has reached the end of the bill table and should
stop iterating.

2

ISO Code 1..3 A three character ASCII currency code. See
ISO 4217 for details “JPY”

Base Value 4..6 A three character ASCII coded decimal value “002”

Sign 7 An ASCII coded sign value for the Exponent.
This field is either a “+” or a “-“ “+”

Exponent 8..9
ASCII coded decimal value for the power of ten
that the base is to either be multiplied by (if
Sign is “+”) or divided by (if Sign is “-“)

“03”

Orientation 10 Not used. Always 0x00. 0x00

Type 11
An ASCII letter that documents the note type.
This corresponds to the data in the variant
identity card.

“A”

Series 12
An ASCII letter that documents the note series.
This corresponds to the data in the variant
identity card.

“A”

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 63 of 128

Copyright MEI © 2008, All Rights Reserved

Field Byte
Offset Field Description Sample Value

(2000 Yen Note)

Compatibility 13
An ASCII letter that documents the revision of
the recognition core used. This corresponds to
the data in the variant identity card.

“B”

Version 14
An ASCII letter that documents the version of
the note’s recognition criteria. This corresponds
to the data in the variant identity card.

“A”

Reserved 15..17 3 bytes reserved for future use. N/A

7.5.2 Set Expanded Note Inhibits
CFSC

This command is used to control the acceptance of bank notes on a note type basis. This
command is formatted as follows STX, Length=0x11, ETX, and CHK omitted):

5 7

o o o

Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

8

Enable 1

nn

9

Enable 2

nn

15

Enable 8

nn

Sub Type

0x03

Where Data 0 through Data 2 are defined the same as the similar values in the standard
omnibus command (see section 7.1.1) but do note that the position of these bytes is shifted one
position due to the presence of a subtype byte. The Enable data is used to enable bills by
index. This is shown below:

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable 1 Bill 7 Bill 6 Bill 5 Bill 4 Bill 3 Bill 2 Bill 1
Enable 2 Bill 14 Bill 13 Bill 12 Bill 11 Bill 10 Bill 9 Bill 8
Enable 3 Bill 21 Bill 20 Bill 19 Bill 18 Bill 17 Bill 16 Bill 15
Enable 4 Bill 28 Bill 27 Bill 26 Bill 25 Bill 24 Bill 23 Bill 22
Enable 5 Bill 35 Bill 34 Bill 33 Bill 32 Bill 31 Bill 30 Bill 29
Enable 6 Bill 42 Bill 41 Bill 40 Bill 39 Bill 38 Bill 37 Bill 36
Enable 7 Bill 49 Bill 48 Bill 47 Bill 46 Bill 45 Bill 44 Bill 43
Enable 8 - - - - - - Bill 50

Data 0 through Data 5 are interpreted just as in the standard response detailed in section 7.1.2.
The reply contains no extended data (STX, Length=0x0B, ETX, and CHK omitted):

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 64 of 128

Copyright MEI © 2008, All Rights Reserved

5 7 8 9Byte 3 4

Name

Value

CTL Data 0

0x2n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Data 5

nn

In some bill acceptors, an alternate reply is given. This reply also contains no extended data
(STX, Length=0x0C, ETX, and CHK omitted):

5 7 8 9 10Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Sub Type

0x03

Data 5

nn

7.5.3 Set Escrow Timeout
CFSC Non-Retail

This command is used to set the escrow timeout of the bill acceptor. This command is
formatted as follows (STX, Length=0x0B, ETX, and CHK omitted):

3 4 5 6 7 8 9Byte

Name

Value

CTL Data 0

0x7n nn

Data 1

nn

Data 2

nn

Notes

nn

Barcode

nn

Sub Type

0x04

Where Data 0 through Data 2 are defined the same as the similar values in the standard
omnibus command (see section 7.1.1) but do note that the position of these bytes is shifted one
position due to the presence of a subtype byte. The Notes and Barcode fields set the timeout
for bank notes and barcodes respectively. This is a value from 1 through 127 seconds, or zero
to disable the timeout. By default, both timeouts are disabled. The reply contains no extended
data (STX, Length=0x0C, ETX, and CHK omitted):

5 7 8 9 10Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Sub Type

0x04

Data 5

nn

Data 0 through Data 5 are interpreted just as in the standard response detailed in section 7.1.2.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 65 of 128

Copyright MEI © 2008, All Rights Reserved

7.5.4 Set Asset Number
CFSC Non-Retail

This command is used to write a string into the asset number of the bill acceptor and the
optional non-volatile memory tag installed in the cash box. This allows the cash box to be linked
back to a specific bill acceptor at a later time when the tag is read. This command is shown
below (STX, Length=0x19, ETX, and CHK omitted).

5 7

o o o

Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

8

Asset 0

nn

9

Asset 1

nn

23

Asset 16

nn

Sub Type

0x05

Where Data 0 through Data 2 are defined the same as the similar values in the standard
omnibus command (see section 7.1.1) but do note that the position of these bytes is shifted one
position due to the presence of a subtype byte. The asset bytes contain an asset string
(number) that is programmed into the unit.

In the reply, Data 0 through Data 5 are interpreted just as in the standard response detailed in
section 7.1.2. The reply contains no extended data (STX, Length=0x0C, ETX, and CHK
omitted):

5 7 8 9 10Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Sub Type

0x05

Data 5

nn

Note: this command is NOT supported in the current retail code base.

7.5.5 Query Value Table
CFSC Deprecated Non-Retail

This command is specific to one particular customer and should not be used. It is not
documented here.

Note: this command is NOT supported in the current retail code base.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 66 of 128

Copyright MEI © 2008, All Rights Reserved

7.5.6 Set Extended PUP Mode
CFSC

This command is used to set up extended PUP mode processing in those bill acceptors that
support it. This may be determined by examining the Device Capability Map (see section 7.4.11
for details). This command is formatted as follows STX, Length=0x0E, ETX, and CHK omitted):

5 7Byte 3 4

Name

Value

CTL Data 0

0x7n nn

6

Data 1

nn

Data 2

nn

8

Mode

nn

9

Pre_Escrow

nn

10

At_Escrow

nn

Sub Type

0x07

11

Post_Escrow

nn

12

Pre_Stack

nn

Where Data 0 through Data 2 are defined the same as the similar values in the standard
omnibus command (see section 7.1.1) but do note that the position of these bytes is shifted one
position due to the presence of a subtype byte. The Mode value is interpreted as follows:

Mode Description

“A” Use PUP-A mode. Pre_Escow, At_Escrow, Post_Escrow and
Pre_Stack are ignored.

“B” Use PUP-B mode. Pre_Escow, At_Escrow, Post_Escrow and
Pre_Stack are ignored.

“C” Use PUP-C mode. Pre_Escow, At_Escrow, Post_Escrow and
Pre_Stack are ignored.

“E”
Use PUP-E mode. In this mode, the normal PUP bits are ignored
and Pre_Escow, At_Escrow, Post_Escrow and Pre_Stack specify
the PUP behaviour. See below.

Other Use PUP-A mode. Pre_Escow, At_Escrow, Post_Escrow and
Pre_Stack are ignored.

PUP processing is controlled by where the bill was when the power failed. The following
positions are defined for the purposes of power up handling.

Bill Position Description

Pre_Escrow The bill is in the process of being drawn into the unit. A
determination of the type of the bill has not yet been made.

At_Escrow The bill is at escrow and has been verfied.

Post_Escrow The command to stack the note was given, but the bill may still be
returned.

Pre_Stack The command to stack the note was given, but the bill may not be
returned.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 67 of 128

Copyright MEI © 2008, All Rights Reserved

The control of the power-up process is shown in the table below:

Value Pre
Escrow

At
Escrow

Post
Escrow

Pre
Stack Action

0 Go out of service.
1 Stack the bill without credit.
2 - Return the bill.
3 - Stack the bill with credit.
4 - - - Erase credit and wait for the host to decide.
5 - - - Preserve credit and wait for the host to decide.

In the reply, Data 0 through Data 5 are interpreted just as in the standard response detailed in
section 7.1.2. The reply contains no extended data (STX, Length=0x0C, ETX, and CHK
omitted):

3 4 5 6 7 8 9 10Byte

Name

Value

CTL Data 0

0x7n nn

Data 1

nn

Data 2

nn

Data 3

nn

Data 4

nn

Sub Type

0x07

Data 5

nn

7.6 Processing States

This section shall describe the processing states associated with the handling of bank notes
and documents in two basic modes of operation.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 68 of 128

Copyright MEI © 2008, All Rights Reserved

7.6.1 Processing States in Non-escrow Mode
Deprecated

The following illustrates the processing states normally encountered while handling a bill in non-
escrow mode:

Idling

Stacked

Accepting

Stacking

Rejected

Occurs 0 or
more times

Occurs 1 time

AA

A

Occurs 1 or
more times

Jammed

Stacked
No

Credit

A

Note that the value of notes is only transmitted to the host when the note is stacked. In case of
a problem stacking the note or a jam, there is no way to determine the value of notes accepted.
This can be contrasted with Escrow mode (illustrated in the next section) where the host is able
to record the value of notes at escrow.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 69 of 128

Copyright MEI © 2008, All Rights Reserved

7.6.2 Processing States in Escrow Mode
Recommended

The following illustrates the processing states normally encountered while handling a bill in
escrow mode:

Host
Stacks
Note

Host
Returns

Note

Idling

Stacked

Accepting

Stacking

Returned

Rejected

Returning

Escrow

Occurs 0 or
more times

Occurs 1 or
more times

Occurs 1 time

A

AA

A

Jammed

Stacked
No

Credit

A

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 70 of 128

Copyright MEI © 2008, All Rights Reserved

8. The Application Layer (for Bill Acceptor)

8.1 Application Startup Tasks

When the application first begins communicating with the bill acceptor, it starts off polling the
device. Depending on the response of the device, appropriate action is taken to set up the bill
acceptor. This is outlined below:

Escrow

Timeout

In download mode.

No response

CONNECTING

Poll the
Bill

Acceptor

RESTART
DOWNLOAD

Poll OK

Set up device
capability flags,

Set up
Bill

Tables

CONNECTEDDISCONNECTED

PUP_ESCROW

There are four possible outcomes:

CONNECTED The acceptor is ready for further commands.
PUP_ESCROW An intermediate state in which the host must decide to accept or

reject a note in escrow at the time the bill acceptor powered up.
RESTART DOWNLOAD The acceptor needs to have an application loaded into it.
DISCONNECTED The attempt to connect did not succeed

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 71 of 128

Copyright MEI © 2008, All Rights Reserved

8.2 Application Currency Handling

8.2.1 Handling Money in Terse Mode:

While expanded mode is preferred, it is not supported across all production platforms. In those
cases, the terse mode must be used. One issue that is raised by terse mode is that bank notes
are not identified as to their value, but are merely given an identifier from 1 through 7. The
following table shows how, with the help of the model number byte defined in section 7.1.2 it is
usually possible to determine the value of currency:

Country USA Argentina Australia Brazil Canada Europe Mexico Russia Unknown
ISO Code USD ARS AUD BRL CAD EUR MXP RUR ***

Model
Numbers

20, 31,
“J”, “X” “P” “G” “A” 15 “W” “C” “D” “M” “B” Other

Index
1 $1 $1 - $5 - 1R - €5 20P 10R $1
2 $2 $2 2P $10 - 2R - €10 50P 50R $2
3 $5 $5 5P $20 $5 5R $5 - - 100R $5
4 $10 $10 10P - $10 10R $10 - - 500R $10
5 $20 $20 20P - $20 20R $20 - - - $20
6 $50 - 50P - $50 50R $50 - - - $50
7 $100 - 100P - $100 100R $100 - - - $100

Note that for most cases, the US table of $1 through $100 may be used. Those entries above
marked with (US) may safely use the US table. When confronted with an unknown model, this
table should be used by default. In other cases, an alternate bill table will need to substituted for
the default table when the required model number is detected.

8.2.2 Handling Money in Expanded Mode:

If the model number of the EBDS unit is “T” or “U” then the device supports expanded note
reporting. When ever possible, expanded note reporting should be used to enhance code
portability and reliability. Expanded note reporting allows applications to be used in various
locales without having to be rewritten. It allows for changes in the currency and provides for
much finer control over the type and orientation of notes accepted.

The amount of a expanded note report may be extracted with the following snippet of “C” code.

unsigned long N,D; // Numerator and Denominator.
int E; // Multiplier Exponent.
double Amount; // Amount of Currency.
int i;

N = (ExtData[4] – ‘0’) * 100 +
 (ExtData[5] – ‘0’) * 10 +
 (ExtData[6] – ‘0’);

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 72 of 128

Copyright MEI © 2008, All Rights Reserved

E = (ExtData[8] – ‘0’) * 10 +
 (ExtData[9] – ‘0’);

if (ExtData[7] == ‘+’)
{

for (i = 0; i < E; i++)
N *= 10;

Amount = (Double)N;
}
else if (ExtData[7] == ‘-’)
{

D = 1;

for (i = 0; i < E; i++)
D *= 10;

Amount = (Double)N/(Double)D;
}
else
{

Amount = (Double)0.0;
}

8.2.3 Recommended money handling flowchart:

The following diagram depicts the recommended method of handling money. There are two
main things to note:

• The deprecated non-escrow mode is replaced by the concept of the “auto-stack” property.
If the application is designed to simply accept bank notes as they come in, the auto-stack
property should be true, so that stacking occurs automatically. If the application needs
more control over which notes are accepted, then the auto-stack property should be false.
When auto-stack is false, the application will receive an “Escrow” event and can then use
the StackEscrowNote() or ReturnEscrowNote() methods to accept or reject the note.

• The value of the bill is recorded while it is at escrow. It is this recorded value that is used
when the bill is stacked and the application receives a “Stacked” event. This handling of the
bill value is needed to handle the cases where a bill is stacked with no credit. Since the
value is retained from escrow, errors in credit and cash box counts are prevented.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 73 of 128

Copyright MEI © 2008, All Rights Reserved

YES

NOYES

NO

BEGIN

Idling

Escrow

A

Set T = Bill Value at Escrow

Auto-Stack
Enabled?

Note
Acceptable

?

Stack the note. Return the note.

Stacked Returned

A A

Send the Application a
Stacked Event with
Value(T). Clear T.

Send the Application a
Returned Event. No

Value. Clear T.

Clear T

8.2.4 Controlling the orientation of accepted bills:

In some applications, it is desired to control the orientation of accepted bills. To accomplish this,
the orientation control bits of the omnibus command may be used to set the orientation (see
section 7.1.1). This method is of limited control however. The reason is that the bill acceptor
also has an internal orientation control. Both of these settings determine the actual orientation
setting used according to the following table:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 74 of 128

Copyright MEI © 2008, All Rights Reserved

4 4 4

4

4

2

1

2

2

EBDS Setting

In
te

rn
al

Se
tti

ng

4 12

4

1

2

Combined
Effective

Setting

It can be seen that the most “liberal” possible setting is used by the acceptor. In this situation,
the only way for the host to have complete control over the orientation of accepted bank notes
is to have the units internal settings configured for 1-way acceptance. Conversely, if it desired
to have control over the orientation of notes by means of the bill acceptor’s internal settings, the
EBDS interface will have to be set to 1-way acceptance.

8.2.5 Improved control of the orientation in expanded mode:

For those devices that support expanded note reporting, it is possible for the host to attain a
greater level of control over the orientation of accepted notes. Quite simply, when notes arrive
at escrow, the host can examine the orientation field (see sections 7.1.4 and 7.4.14) in the
expanded note data and simply return any notes that do correspond to the desired orientation.
In this mode, the host system has the final say as to the suitability of the note.

8.3 Determining the Firmware Version

When a host system connects to a bill acceptor, it is often useful to ascertain the version and
type of software installed in the unit. If the host can determine this, it is capable then of making
decisions about the firmware like performing a upgrade to the desired firmware or signalling an
error that the software in the unit does not match the expected software.

8.3.1 Firmware Version in Classic EBDS:

In classic EBDS, it is not generally possible to determine the exact firmware stored in the flash
memory of a device. It is however possible to build a unique “signature” of the code and to use
this as a form of identification. This is accomplished by means of the Model Number byte, the
Code Revision byte and the Flash CRC. Together these form a 32 bit code signature that
should be unique. If this signature does not match the expected signature, the corrective action
can be taken in the form of uploading the appropriate firmware or signaling an error condition.

This 32 bit code signature could be laid out as follows:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 75 of 128

Copyright MEI © 2008, All Rights Reserved

32 Bits

Model Version CRC-1600

The integer value created could then be used to key into a database or some similar scheme.

8.3.2 Firmware Version in Extended EBDS:

In systems that support the extended command set, it is possible to directly query the part
number of the application and variant installed in the unit. This returns two strings that permit
the host system to directly determine if the software manifest of the bill acceptor is correct. As
above, corrective actions can include uploading the appropriate firmware or signaling an error
condition.

8.4 Handling Acceptor Exceptions

Some acceptor exceptions bear further examination. This section will review suggested
corrective actions to be taken when unusual status values are returned.

8.4.1 Bill Acceptor does not respond to a poll:

It is not unusual for the bill acceptor to be busy and to “miss” a poll. Under these conditions the
host should retry at the normal poll rate with the same ACK value (see section 4.5). If after ten
retries, there has been no response it should toggle the ACK value and keep trying for ten more
times.

8.4.2 Bill Acceptor does not respond for an extended period:

If the bill acceptor does not respond after thirty seconds of retrying, the host should “declare”
the unit is out of service and that service intervention is required. The most likely cause of the
problem is that there is a cabling or power problem with the unit or there is something wrong
with the bill acceptor. The host should go out of service and request a field service call.

8.4.3 Bill Acceptor Status: Cheated
If a bill acceptor status of cheated (see section 7.1.2) is returned to the host, it means that there
was a problem transporting the bill to the cashbox. This could indeed be the result of fraudulent
manipulation of the bill or the unit. It could also be as harmless as an old bank note getting
stuck. In most cases, the host should simply ignore this event. MEI does not offer a method
to set / test cheat events.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 76 of 128

Copyright MEI © 2008, All Rights Reserved

8.4.4 Bill Acceptor Status: Rejected

If the bill acceptor returns a status of rejected (see section 7.1.2) it simply means that a bill was
not recognized as a good bill. The host should take no action.

8.4.5 Bill Acceptor Status: Jammed

If the bill acceptor returns a status of jammed (see section 7.1.2) it means that a problem has
been encountered transporting the bill (either for acceptance or rejection). When a jam is
detected, anti-jam routines are run to clear the jam. If successful, the jammed condition will be
cleared, otherwise, it will persist. If the host detects a jammed condition, it should go out of
service for the duration of the jam.

8.4.6 Bill Acceptor Status: Stacker Full

If the bill acceptor returns a status of stacker full (see section 7.1.2) it means that no more
documents may be placed into the cashbox. The host should go out of service and request a
cash box swap from the attendant.

8.4.7 Bill Acceptor Status: Cashbox Removed

If the bill acceptor returns a status of cash box removed (see section 7.1.2) it means that the
unit may no longer accept money. This will occur as a matter of course when the cashbox is
swapped at the end of the shift. It may also occur if the cashbox is not seated correctly and
normal operating vibration causes it to work loose. In this case the host should go out of service
and request an attendant to examine the cashbox.

8.4.8 Bill Acceptor Status: Paused

If the bill acceptor returns a status of paused (see section 7.1.2), it means that the consumer is
feeding bills too fast and needs to remove the current bill from the mouth of the bill acceptor so
that it can proceed. The host should signal this to the consumer.

8.4.9 Bill Acceptor Status: Calibration in Progress

If the bill acceptor returns a status of calibration in progress (see section 7.1.2) and a calibration
was not requested, it means that there is a problem with the bill acceptor and the host should
go out of service and request a field service call.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 77 of 128

Copyright MEI © 2008, All Rights Reserved

8.4.10 Bill Acceptor Status: Power Up

If the bill acceptor returns a status of power up (see section 7.1.2) it means that something has
caused the unit to be reset or that it has lost power and recovered. The host should proceed to
perform its initialization tasks once more (see section 8.1)

8.4.11 Bill Acceptor Status: Invalid Command

If the bill acceptor returns a status of invalid command (see section 7.1.2) it means that there is
a defect in the host code. Normally this error should never occur outside of development and
debug phases of the system. In the field, this error should be logged as a problem with the host
system programming.

8.4.12 Bill Acceptor Status: Failure

If the bill acceptor returns a status of failure (see section 7.1.2) it means that there is a serious
problem with either the bill acceptor, the chassis, or the cash box. This problem requires
attention and the host should go out of service and request a field service call.

8.4.13 Bill Acceptor Status: Stalled

If the bill acceptor returns a status of stalled (see section 7.1.2) it means that the unit
encountered a problem transporting the bill to the cashbox and that it is now stalled, with the bill
near or just at the cashbox. An attendant is required to examine the source of the problem with
the bill and to reset the unit. This condition only occurs if the host enables No Push mode (see
section 7.1.1)

8.4.14 Bill Acceptor Status: Flash Download

If the bill acceptor returns a status of flash download (see section 7.1.2) and this is not
expected, it means that the unit is lacking application code or that a previous download attempt
was interrupted or failed. the host may either attempt to download the correct firmware or it may
go out of service and request a field service call.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 78 of 128

Copyright MEI © 2008, All Rights Reserved

9. MEI Point of Service Toolkit (M/POST)
EBDS protocol devices may also be accessed via the EBDS portion the MEI Point of Service
Toolkit (M/POST). The M/POST provides for significant savings of time and effort for coding,
debugging and deploying applications that require the acceptance and handling of cash.

9.1 M/POST for EBDS Overview:

The M/POST is based on the Properties/Methods/Events model of programming used in
objected oriented systems and the description of it will be along those lines.

Notes:
 For programming systems that do not directly support properties, access functions are

used. The prefix “Qry” is used for the read access function and the prefix “Set” is used for
the write access function.

 For programming systems that do not support name spaces, all of the following definitions
(except for common ones like BOOLEAN, STRING etc) are prefixed with “Ebds”.

 When both name space and access prefixes are needed, the “Ebds” prefix appears first in
the entity name. This would result in function names like “EbdsQryCapOrientationExt()”.

9.1.1 M/POST for EBDS Acceptor Properties:

Name Type Vers Access When usable?
ApplicationID STRING 1.00 R CapApplicationID
ApplicationPN STRING 1.00 R CapApplicationPN
AuditLifeTimeTotals INT32[] 1.00 R CapAudit.
AuditPerformance INT32[] 1.00 R CapAudit.
AuditQP INT32[] 1.00 R CapAudit.
AutoStack BOOLEAN 1.00 R/W Connected.
BarCode STRING 1.00 R DocType == DocBarCode.
Bill Bill 1.00 R DocType == DocBill.
BillTypes Bill[] 1.00 R Connected.
BillTypeEnables BOOLEAN[] 1.00 R/W Connected.
BillValues Bill[] 1.00 R Connected.
BillValueEnables BOOLEAN[] 1.00 R/W Connected.
BNFStatus BNFStatus 1.00 R CapBNFStatus
BootPN STRING 1.00 R CapBootPN.
CapApplicationID BOOLEAN 1.00 R Connected.
CapApplicationPN BOOLEAN 1.00 R Connected.
CapAssetNumber BOOLEAN 1.00 R Connected.
CapAudit BOOLEAN 1.00 R Connected.
CapBarCodes BOOLEAN 1.00 R Connected.
CapBarCodesExt BOOLEAN 1.00 R Connected.
CapBNFStatus Boolean 1.00 R Connected.
CapBookmark BOOLEAN 1.00 R Connected.
CapBootPN BOOLEAN 1.00 R Connected.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 79 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
CapCalibrate BOOLEAN 1.00 R Connected.
CapCashBoxTotal BOOLEAN 1.00 R Connected.
CapCouponExt BOOLEAN 1.00 R Connected.
CapDevicePaused BOOLEAN 1.00 R Connected.
CapDeviceSoftReset BOOLEAN 1.00 R Connected.
CapDeviceType BOOLEAN 1.00 R Connected.
CapDeviceResets BOOLEAN 1.00 R Connected.
CapDeviceSerialNumber BOOLEAN 1.00 R Connected.
CapEscrowTimeout BOOLEAN 1.00 R Connected.
CapFlashDownload BOOLEAN 1.00 R Connected.
CapNoPush BOOLEAN 1.00 R Connected.
CapOrientationExt BOOLEAN 1.00 R Connected.
CapPupExt BOOLEAN 1.00 R Connected.
CapSetBezel BOOLEAN 1.10 R Connected.
CapTestDoc BOOLEAN 1.00 R Connected.
CapVariantID BOOLEAN 1.00 R Connected.
CapVariantPN BOOLEAN 1.00 R Connected.
CashBoxAttached BOOLEAN 1.00 R Connected.
CashBoxFull BOOLEAN 1.00 R Connected.
CashBoxTotal INT32 1.00 R CapCashBoxTotal.
Connected BOOLEAN 1.00 R Always.
Coupon Coupon 1.00 R DocType == DOC_COUPON
DebugLog BOOLEAN 1.00 R/W Always.

DebugLogPath STRING 1.00 R/W Read: Always
Write: When DebugLog is false.

DeviceBusy BOOLEAN 1.00 R Connected.
DeviceCRC INT32 1.00 R Connected.
DeviceFailure BOOLEAN 1.00 R Connected.
DeviceJammed BOOLEAN 1.00 R Connected.
DeviceModel INT32 1.00 R Connected.
DevicePaused BOOLEAN 1.00 R CapDevicePaused.
DevicePortName STRING 1.00 R Connected.
DevicePowerUp PowerUp 1.00 R Connected.
DeviceResets INT32 1.00 R CapDeviceResets.
DeviceRevision INT32 1.00 R Connected.
DeviceSerialNumber STRING 1.00 R CapDeviceSerialNumber.
DeviceSignature INT32 1.00 R Connected.
DeviceStalled BOOLEAN 1.00 R CapNoPush.
DeviceState State 1.00 R Always.
DeviceType STRING 1.00 R CapDeviceType
DocType DocType 1.00 R After DeviceState == Escrow.
EnableAcceptance BOOLEAN 1.00 R/W Connected.
EnableBarCodes BOOLEAN 1.00 R/W CapBarCodes.
EnableBookmarks BOOLEAN 1.00 R/W CapBookmark.
EnableCouponExt BOOLEAN 1.00 R/W CapCouponExt
EnableNoPush BOOLEAN 1.00 R/W CapNoPush.

EscrowOrientation Orientation 1.00 R After DeviceState == Escrow.
when CapOrientationExt.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 80 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
HighSecurity BOOLEAN 1.00 R/W Connected.
OrientationCtl OrientationCtl 1.00 R/W Connected.
OrientationCtlExt OrientationCtl 1.00 R/W CapOrientationExt.
VariantID STRING 1.00 R CapVariantID.
VariantNames STRING[] 1.00 R Connected.
VariantPN STRING 1.00 R CapVariantPN.
Version STRING 1.00 R Always

9.1.2 M/POST for EBDS Bill Properties:

Name Type Vers Access Values
Country STRING 1.00 R Three letter ISO code or “*”.
Value DOUBLE 1.00 R
Type CHAR 1.00 R ‘A’ .. ‘Z’ or ‘*’
Series CHAR 1.00 R ‘A’ .. ‘Z’ or ‘*’
Compatibility CHAR 1.00 R ‘A’ .. ‘Z’ or ‘*’
Version CHAR 1.00 R ‘A’ .. ‘Z’ or ‘*’

9.1.3 M/POST for EBDS Coupon Properties:

Name Type Vers Access Values
OwnerID INT32 1.00 R An integer assigned to the

owner of the coupon
Value DOUBLE 1.00 R The monetary value of the

generic coupon.
0.0D == Free vend coupon
1.0D == $1 coupon
2.0D == $2 coupon
5.0D == $5 coupon

9.1.4 M/POST for EBDS DocType Enumeration:

DocType = {None, NoValue, Bill, Barcode, Coupon}

This type describes the type of document currently being processed. This may be one of:

Type Description
None No document is currently being processed.
NoValue A document with no value is being processed.
Bill A bank note is being processed.
Barcode A bar code is being processed.
Coupon A generic coupon is being processed.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 81 of 128

Copyright MEI © 2008, All Rights Reserved

9.1.5 M/POST for EBDS Orientation Enumeration:

Orientation = {RightUp, RightDown, LeftUp, LeftDown,
 Unknown}

This type describes the orientation of a note. It is hoped that the descriptions are self evident.

9.1.6 M/POST for EBDS OrientationCtl Enumeration:

OrientationCtl = {FOUR_WAY, TWO_WAY, ONE_WAY }

This type describes the ways that the orientation of notes may be controlled. This is shown in
the table below:

Control Right-Up Right-Down Left-Up Left-Down
FOUR_WAY
TWO_WAY
ONE_WAY

9.1.7 M/POST for EBDS PowerUp Enumeration:

PowerUp = {A, B, C, E}

9.1.8 M/POST for EBDS PupExt Enumeration:

PupExt = {PUP_RETURN, PUP_OOS, PUP_STACK_NC, PUP_STACK,
 PUP_WAIT_NC, PUP_WAIT}

9.1.9 M/POST for EBDS State Enumeration:

State = {DISCONNECTED, CONNECTING, PUP_ESCROW, IDLING,
 ACCEPTING, ESCROW, STACKING, STACKED, RETURNING,
 RETURNED, REJECTED, JAMMED, STALLED, FAILED,
 CALIBRATE_START, CALIBRATING, DOWNLOAD_START,
 DOWNLOAD_RESTART, DOWNLOADING}

9.1.10 M/POST for EBDS BNFStatus Enumeration:

BNFStatus = {UNKNOWN, OK, NOT_ATTACHED, ERROR}

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 82 of 128

Copyright MEI © 2008, All Rights Reserved

9.1.11 M/POST for EBDS Bezel Enumeration:

Bezel = {Standard, Platform, Diagnostic}

9.1.12 M/POST for EBDS Acceptor Methods:

Name/Types When usable? Vers
void Open(STRING port_name,
 PowerUp power_up) DeviceState == Disconnected. 1.00

void Close(void) Connected 1.00
void Calibrate(void) not DeviceBusy and CapCalibrate 1.00
void EscrowReturn(void) DeviceState == ESCROW or

DeviceState == POWER_UP_ESCROW 1.00

void EscrowStack(void) DeviceState == ESCROW or
DeviceState == POWER_UP_ESCROW 1.00

void FlashDownload(STRING file_path) not DeviceBusy and CapFlashDownload 1.00
void ClearCashBoxTotal(void) not DeviceBusy and CapCashBoxTotal. 1.00
void SoftReset(void) CapDeviceSoftReset 1.00
void SetAssetNumber(STRING asset) not DeviceBusy and CapAssetNumber. 1.00
void SetBezel(Bezel b) not DeviceBusy and CapSetBezel. 1.10
void SpecifyEscrowTimeout(
 INT32 bill_timeout,
 INT32 barcode_timeout)

CapEscrowTimeout 1.00

void SpecifyPupExt(CHAR pup_mode,
 tPupExt pre_escrow,
 tPupExt at_escrow,
 tPupExt post_escrow
 tPupExt pre_stack)

not DeviceBusy and CapPupExt. 1.00

9.1.13 M/POST for EBDS Acceptor Events:

Name Parameter Data Vers
CONNECTED none 1.00
DISCONNECTED none 1.00
ESCROW none 1.00
PUP_ESCROW none 1.00
STACKED none 1.00
RETURNED none 1.00
REJECTED none 1.00
CHEATED none 1.00
CALIBRATE_START none 1.00
CALIBRATE_PROGRESS none 1.00
CALIBRATE_FINISH none 1.00
DOWNLOAD_START INT32 total_num 1.00
DOWNLOAD_RESTART none 1.00
DOWNLOAD_PROGRESS INT32 sector_num 1.00
DOWNLOAD_FINISH BOOLEAN success 1.00

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 83 of 128

Copyright MEI © 2008, All Rights Reserved

Name Parameter Data Vers
PAUSE_DETECTED none 1.00
PAUSE_CLEARED none 1.00
STALL_DETECTED none 1.00
STALL_CLEARED none 1.00
JAM_DETECTED none 1.00
JAM_CLEARED none 1.00
CASHBOX_REMOVED none 1.00
CASHBOX_INSTALLED none 1.00
POWER_UP none 1.00

9.1.14 M/POST for EBDS Acceptor Properties Details:

Name Type Vers Access When usable?
ApplicationID STRING 1.00 R CapApplicationID
Read point: Query acceptor on demand. Write point: n/a

This property string contains the application ID. This takes the form of a string. For more details
see section 7.4.15. If CapApplicationID is false, the value is the empty string.

Name Type Vers Access When usable?
ApplicationPN STRING 1.00 R CapApplicationPN
Read point: Query acceptor on demand. Write point: n/a

This property string contains the application part number. This takes the form of a string. For
more details see section 7.4.8. If CapApplicationPN is false, the value is the empty string.

Name Type Vers Access When usable?
AuditLifeTimeTotals INT32[] 1.00 R CapAudit.
Read point: Query acceptor on demand. Write point: n/a

This property contains an array of integers with lifetime data. For more details, see section
7.4.11. If this property is unavailable, the value is an empty array.

Name Type Vers Access When usable?
AuditPerformance INT32[] 1.00 R CapAudit.
Read point: Query acceptor on demand. Write point: n/a

This property contains an array of integers with performance data. For more details, see section
7.4.13. If this property is unavailable, the value is an empty array.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 84 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
AuditQP INT32[] 1.00 R CapAudit.
Read point: Query acceptor on demand. Write point: n/a

This property contains an array of integers with performance data. For more details, see section
7.4.12. If this property is unavailable, the value is an empty array.

Name Type Vers Access When usable?
AutoStack BOOLEAN 1.00 R/W Connected.
Read point: Local host variable. Write point: Immediately when written.

This property controls the handling of documents. If set, documents are automatically stacked
when they are received. If not set, the application is informed via the ESCROW event when a
document arrives. For more details see section 8.2.3. If this property is unusable, it is ignored.

Name Type Vers Access When usable?
BarCode STRING 1.00 R DocType == DocBarCode.
Read point: At barcode escrow. Write point: n/a

This property contains the barcode info extracted from the most recent bar-coded document.
See section 7.1.3 for more details. If a bar-coded document is not being processed, this
property has an undefined value.

Name Type Vers Access When usable?
Bill Bill 1.00 R DocType == DocBill.
Read point: At bill escrow. Write point: n/a

This property contains the bill info extracted from the most recent bank note. See sections
7.1.4, 8.2 and 9.1.2 for more details. If a bank note is not being processed, this property has an
undefined value.

Name Type Vers Access When usable?
BillTypes Bill[] 1.00 R Connected.
Read point: Cached on connect. Write point: n/a

This property is an array of all of the bill’s that are accepted by the device. This includes entries
for each variety of bank note. This table is constructed when the connection to the acceptor is
established. See section 9.1.2 for more details. If this property is unavailable, the value is an
empty array.

An example of a print out of this property for a bill acceptor loaded with the US dollar variant
part number 490320223 is shown below:

 1 USD 1 C A B B
 2 USD 2 C A B A
 3 USD 2 C B B A

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 85 of 128

Copyright MEI © 2008, All Rights Reserved

 4 USD 5 C A B B
 5 USD 5 D A B C
 6 USD 10 D A B B
 7 USD 10 E A B C
 8 USD 10 F A B B
 9 USD 20 C A B B
10 USD 20 D A B C
11 USD 20 E A B B
12 USD 50 C A B B
13 USD 50 D A B C
14 USD 50 D B B C
15 USD 50 F A B B
16 USD 100 C A B B
17 USD 100 D A B D
18 USD 100 D B B C

Name Type Vers Access When usable?
BillTypeEnables BOOLEAN[] 1.00 R/W Connected.

Read point: Created on connect. Pre-
filled with true entries. Write point: Sent to the bill acceptor at the

next available time slot.

This property is an array of Boolean values that correspond to the entries in the BillTypes
property. Acceptance of bills that correspond to those values may be controlled with true entries
accepting notes and false entries rejecting them. See sections 7.1.1 and 7.5.2 for more details.
If this property is unavailable, the value is an empty array.

Note: Changes in the BillValueEnables property will result in changes to the BillTypesEnables
property. However, changes made to the BillTypesEnables do NOT propagate back to the
BillValueEnables property. In general, the application should use one of the bill enable
properties and not switch back and forth between them as this may cause unexpected results.

ERRATA: On some bill acceptors with out-of-date firmware there is a defect in the code that
will cause the units to not be enabled until the BillTypeEnables property is set. To get around
this defect the application may place a line of code that sets this property in its Connected
event handler. An example, harmless line of code might look like:

billAcceptor.BillTypeEnables = billAcceptor.BillTypeEnables;

Name Type Vers Access When usable?
BillValues Bill[] 1.00 R Connected.
Read point: Cached on connect. Write point: n/a

This property is an array of all of the bill’s that are accepted by the device. Variations in like-
valued bank notes are ignored, so that each entry has a different monetary value or country.
This table is constructed when the connection to the acceptor is established. See section 9.1.2
for more details. If this property is unavailable, the value is an empty array.

An example of a print out of this property for a bill acceptor loaded with the US dollar variant
part number 490320223 is shown below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 86 of 128

Copyright MEI © 2008, All Rights Reserved

 1 USD 1 * * * *
 2 USD 2 * * * *
 3 USD 5 * * * *
 4 USD 10 * * * *
 5 USD 20 * * * *
 6 USD 50 * * * *
 7 USD 100 * * * *

Note that the view of the bill set is simpler than that in the BillTypes property, but that the detail
information about the various bill types and variations is not available.

Name Type Vers Access When usable?
BillValueEnables BOOLEAN[] 1.00 R/W Connected.

Read point: Created on connect. Pre-
filled with true entries. Write point: Sent to the bill acceptor at the

next available time slot.

This property is an array of Boolean values that correspond to the entries in the BillValues
property. Acceptance of bills that correspond to those values may be controlled with true entries
accepting notes and false entries rejecting them. See sections 7.1.1 and 7.5.2 for more details.
If this property is unavailable, the value is an empty array.

Note: Changes in the BillValueEnables property will result in changes to the BillTypesEnables
property. However, changes made to the BillTypesEnables do NOT propagate back to the
BillValueEnables property. In general, the application should use one of the bill enable
properties and not switch back and forth between them as this may cause unexpected results.

Name Type Vers Access When usable?
BNFStatus BNFStatus 1.00 R CapBNFStatus
Read point: Query acceptor on demand. Write point: n/a

This property can be used to determine the status of the optional bunch note feeder
attachment. This property is only valid when CapBNFStatus is true. When false, the status will
always be UNKNOWN.

Name Type Vers Access When usable?
BootPN STRING 1.00 R CapBootPN.
Read point: Query acceptor on demand. Write point: n/a

This property string contains the boot part number. This takes the form of a string. For more
details see section 7.4.7. If CapBootPN is false, the value is the empty string.

Name Type Vers Access When usable?
Cap*** BOOLEAN 1.00 R Connected.
Read point: Cached on connect. Write point: n/a

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 87 of 128

Copyright MEI © 2008, All Rights Reserved

The properties beginning with “Cap” are all capability flags that indicate what features are
present on the connected bill acceptor. For the most part, these flags are derived from the
model number field sent by the acceptor (see section 7.1.2)

Name Model # Other Criteria
CapApplicationID Device Capability Map is set for

query acceptor application ID.
CapApplicationPN “T”, “U”
CapAssetNumber “T”, “U”
CapAudit “T”, “U”
CapBarCodes 15, 23 , “T”, “U”

CapBarCodesExt The RawBarcodes bit is set in
device replies (see section 7.1.2)

CapBNFStatus Device Capability Map is set for
query BNF status.

CapBookmark True
CapBootPN “T”, “U”
CapCalibrate True
CapCashBoxTotal “A”, “B”, “C”, “D”, “G”, “M”,

“P”, “W”, “X”
CapCouponExt “P”, “X”
CapDevicePaused 31, “P”, “X”
CapDeviceSoftReset 31, “A”, “B”, “C”, “D”, “G”,

“M”, “P”, “T”, “U”, “W”, “X”
CapDeviceType “T”, “U”
CapDeviceResets “A”, “B”, “C”, “D”, “G”, “M”,

“P”, “T”, “U”, “W”, “X”
CapDeviceSerialNumber “T”, “U”
CapEscrowTimeout “T”, “U”
CapFlashDownload True
CapNoPush 23, 31, “P”, “X”
CapOrientationExt Device Capability Map is set for

extended orientation control.
CapPupExt Device Capability Map is set for

extended PUP mode.
CapSetBezel Device Capability Map is set for set

bezel.
CapTestDoc Device Capability Map is set for

test document accepted.
CapVariantID Device Capability Map is set for

query acceptor variant ID.
CapVariantPN “T”, “U”

See section 7.4.11 for a description of the Device Capability Map.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 88 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
CashBoxAttached BOOLEAN 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

This property is true when a cash box is attached to the bill acceptor. See section 7.1.2 for
more details on this flag.

Name Type Vers Access When usable?
CashBoxFull BOOLEAN 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

This property is true when a cash box is full and can no longer accept bills. See sections 7.1.2
and 8.4.6 for more details on this flag.

Name Type Vers Access When usable?

CashBoxTotal INT32 1.00 R not DeviceBusy and
CapCashBoxTotal.

Read point: Query acceptor on demand. Write point: n/a

This property contains reflects the amount of currency believed to present in the cash box. See
section 7.4.2 for more details.

Name Type Vers Access When usable?
Connected BOOLEAN 1.00 R Always.
Read point: Updated on each poll. Write point: n/a

The connected property is true if a device is connected and responding to the host system. This
becomes false when the device does not respond to polls for more than an allowable limit, or
the connection is closed by the host. This limit is five seconds for model “T” and “U” devices
and thirty seconds for all others.

Name Type Vers Access When usable?
Coupon Coupon 1.00 R DocType == DOC_COUPON
Read point: At coupon escrow. Write point: n/a

This property contains the coupon info extracted from the most recent generic coupon. See
sections 7.1.5, and 9.1.3 for more details. If a coupon note is not being processed or
EnableCouponExt is false, this property has an undefined value.

Name Type Vers Access When usable?
DebugLog BOOLEAN 1.00 R/W Always.
Read point: Local host variable. Write point: Set by application code.

This property is used to control the generation of a debug log file. In the development phase of
an application, this log can be useful in diagnosing any problems or issues that might arise.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 89 of 128

Copyright MEI © 2008, All Rights Reserved

Note that the debug log file is locked while the application is using it. This flag should be false
for deployed applications.

Name Type Vers Access When usable?

DebugLogPath STRING 1.00 R/W Read: Always
Write: When DebugLog is false.

Read point: Local host variable. Write point: Set by application code.

This property is used to control the location of the debug log file. When the DebugLog property
is set to true, the value of this property is used to determine the location of the log file. By
default, the log file is created in the same folder where the application is deployed.

Name Type Vers Access When usable?
DeviceBusy BOOLEAN 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

This flag is true if the bill acceptor is in the idle state. In this state, it is possible to perform more
complex commands that would interfere with bill acceptance.

Name Type Vers Access When usable?
DeviceCRC INT32 1.00 R Connected.
Read point: Query acceptor on demand. Write point: n/a

This value is the CRC of the flash memory (excluding boot and “special” areas). See section
7.4.1 for more details.

Name Type Vers Access When usable?
DeviceFailure BOOLEAN 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

When this flag is set, the bill acceptor is out of service and requires attention, typically in the
form of a call by a service technician. See sections 7.1.2 and 8.4.12 for more details on this
flag.

Name Type Vers Access When usable?
DeviceJammed BOOLEAN 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

When this flag is set, the bill acceptor has encountered a jam condition and requires attention,
typically in the form of a clearing debris from the bill path. See section 7.1.2 for more details on
this flag.

Name Type Vers Access When usable?
DeviceModel INT32 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 90 of 128

Copyright MEI © 2008, All Rights Reserved

This number is set from the model number field returned by the bill acceptor for each poll. If the
value is between 32 and 126, it should be treated as a single printable character. See section
7.1.2 for more details on this value.

Name Type Vers Access When usable?
DevicePaused BOOLEAN 1.00 R CapDevicePaused.
Read point: Updated on each poll. Write point: n/a

This flag is set when the bill acceptor is in the PAUSED condition. This occurs when the
consumer attempts to insert another bill while the previous one is still being processed. The
system pauses to avoid grabbing two bills and “stealing” the second one. See section 7.1.2 for
more details on this value. If this property is not supported, it will always be false.

Name Type Vers Access When usable?
DevicePortName STRING 1.00 R Connected.
Read point: Cached on connect. Write point: n/a

This is a copy of the port_name parameter passed into the Open method. It is the serial or
virtual serial port used to communicate with the bill acceptor.

Name Type Vers Access When usable?
DevicePowerUp PowerUp 1.00 R Connected.
Read point: Cached on connect. Write point: n/a

This is a copy of the power_up parameter passed into the Open method. It is of type tPowerUp
and control the behavior of the bill acceptor when a bill is being processed during a power
failure. See section 7.1.1 for more details.

Name Type Vers Access When usable?
DeviceResets INT32 1.00 R CapDeviceResets.
Read point: Query acceptor on demand. Write point: n/a

This property returns the number of times that the bill acceptor has been reset. See section
7.4.3 for more details. If this property is not supported, it will always be 0.

Name Type Vers Access When usable?
DeviceRevision INT32 1.00 R Connected.
Read point: Updated on each poll. Write point: n/a

This property is the numeric value contained in the standard EBDS revision field. See section
7.1.2 for more details.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 91 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
DeviceSerialNumber STRING 1.00 R CapDeviceSerialNumber.
Read point: Query acceptor on demand. Write point: n/a

This property is the serial number of the attached device in string format. See section 7.4.6 for
more details on this property. If this property is not supported, it will always be the empty string.

Name Type Vers Access When usable?
DeviceSignature INT32 1.00 R Connected.
Read point: Query acceptor on demand. Write point: n/a

This property returns a value that corresponds to the legacy mode device signature outlined in
section 8.3.1. This signature can be used to affirm that the code contained within a unit
matches the expected code.

Name Type Vers Access When usable?
DeviceStalled BOOLEAN 1.00 R CapNoPush.
Read point: Updated on each poll. Write point: n/a

This flag is set when the bill acceptor is in the STALLED condition. This occurs when a jam is
detected and NoPush mode is active. The system pauses so that the operator can examine the
bill that caused the jam and to check for a possible fraud. See sections 7.1.2 and 8.4.13 for
more details on this value. If this property is not supported, it will always be false.

Name Type Vers Access When usable?
DeviceState State 1.00 R Always.
Read point: Local host variable. Write point: n/a

This variable reflects the current state of the bill acceptor. See section 9.1.9 as well a section
7.1.2 for details.

Name Type Vers Access When usable?
DeviceType STRING 1.00 R CapDeviceType
Read point: Query acceptor on demand. Write point: n/a

This property is the device type of the attached device in string format. See section 7.4.5 for
more details on this property. If this property is not supported, it will always be the empty string.

Name Type Vers Access When usable?
DocType DocType 1.00 R After DeviceState == Escrow.
Read point: Query acceptor on demand. Write point: n/a

This property is the type of document currently being processed. Typically this property is
interrogated at escrow and when a document is stacked to determine how it should be
processed. See section 9.1.4 for a list of possible document types. If this property is not current,
it will reflect the value of the last document processed by the acceptor.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 92 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
EnableAcceptance BOOLEAN 1.00 R/W Connected.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control acceptance of documents by the bill acceptor. If false, the bill
acceptor will accept no documents, if true, then the selected bills, and other documents will be
accepted.

Name Type Vers Access When usable?
EnableBarCodes BOOLEAN 1.00 R/W CapBarCodes.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control acceptance of bar coded documents. If false, the bill acceptor
will accept no bar codes, if true, then bar codes will be accepted if the EnableAcceptance
property is true. This property is ignored if CapBarCodes is false.

Name Type Vers Access When usable?
EnableBookmarks BOOLEAN 1.00 R/W CapBookmark.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control acceptance of book mark documents. If false, the bill acceptor
will accept no book marks, if true, then book marks will be accepted if the EnableAcceptance
property is true. This property is ignored if CapBookmark is false.

Name Type Vers Access When usable?
EnableCouponExt BOOLEAN 1.00 R/W CapCouponExt
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control acceptance of generic coupon documents. If false, the bill
acceptor will treat the coupons the same as a bill of the same value. If true, then coupons
receive special processing and more details about the coupon are available vie the Coupon
property. This property is ignored if CapCouponExt is false.

Name Type Vers Access When usable?
EnableNoPush BOOLEAN 1.00 R/W CapNoPush.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control the handling of jam conditions that require a stack of the
offending document. If false, the bill acceptor will function normally, if true, the acceptor will
enter the STALLED condition when a jam recovery needs to stack. This property is ignored if
CapBookmark is false.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 93 of 128

Copyright MEI © 2008, All Rights Reserved

Name Type Vers Access When usable?
EscrowOrientation Orientation 1.00 R After DeviceState == Escrow.

when CapOrientationExt.
Read point: At bill escrow. Write point: n/a

This property reflects the orientation of bank notes that are fed into the bill acceptor. Note that
bar codes, coupons or bookmarks do not have orientation data. The orientation values are
specified in section 9.1.5. Note that if CapOrientationExt is false then the orientation returned is
always ORIENTATION_UNKNOWN.

Name Type Vers Access When usable?
HighSecurity BOOLEAN 1.00 R/W Connected.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control the security criteria applied to the processing of bills. This is a
somewhat obsolete concept in that bill acceptance is normally optimize for maximum
acceptance and security. Thus most bill acceptors ignore this value. See section 7.1.1 for more
details on this setting.

Name Type Vers Access When usable?
OrientationCtl OrientationCtl 1.00 R/W Connected.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control the orientation criteria applied to the processing of bills. See
sections 7.1.1 and 8.2.4 for more details on this setting.

Name Type Vers Access When usable?
OrientationCtlExt OrientationCtl 1.00 R/W CapOrientationExt.
Read point: Local host variable. Write point: Updated on each poll.

This property is used to control the orientation criteria applied to the processing of bills. See
sections 7.1.1, 8.2.4 and 8.2.5 for more details on this setting. If CapOrientationExt is false, this
property is ignored.

Name Type Vers Access When usable?
VariantID STRING 1.00 R CapVariantID.
Read point: Query acceptor on demand. Write point: n/a

This property string contains the bill variant ID. This takes the form of a string. For more details
see section 7.4.10. If CapVariantID is false, the value is the empty string.

Name Type Vers Access When usable?
VariantNames STRING[] 1.00 R Connected.
Read point: Query acceptor on demand. Write point: n/a

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 94 of 128

Copyright MEI © 2008, All Rights Reserved

This property is an array of strings that represent the country codes of the currencies accepted
by the bill acceptor. See section 7.4.9 for more details.

Name Type Vers Access When usable?
VariantPN STRING 1.00 R CapVariantPN.
Read point: Query acceptor on demand. Write point: n/a
This property string contains the bill variant part number. This takes the form of a string. For
more details see section 7.4.10. If CapVariantPN is false, the value is the empty string.

Name Type Vers Access When usable?
Version STRING 1.00 R Always
Read point: Constant data. Write point: n/a

This property contains the version string on the M/POST code. For version 1.00 this is the
string “V1.00, 283792100”.

9.1.15 M/POST for EBDS Acceptor Methods Details:

void Open(STRING port_name, tPowerUp power_up)

This function is used to open a connection to the bill acceptor. This function may only be called
when the bill acceptor is in the DISCONNECTED state. On return, the process of connecting
will be started. This process is completed when the CONNECTED event is sent to the
application and the state of the bill acceptor moves passed the CONNECTING state.

If a connection cannot be established, the DISCONNECTED event is sent to the application to
indicate failure.

If the unit is “stuck” in download mode, the DOWNLOAD_RESTART event is sent so the
application can restart the flash download or signal an error if that option is not supported.

Exception(s):
INVALID_PORT, INVALID_STATE

void Close(void)

This function is used to close the connection to the bill acceptor. This function encapsulates all
of the application session closing requirements outlined in section 6.3. When this process is
completed, the DISCONNECTED event is sent to the application.

Exception(s):
INVALID_STATE

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 95 of 128

Copyright MEI © 2008, All Rights Reserved

void Calibrate(void)

This function is used to start the calibrate process. When the bill acceptor is ready to accept the
calibration document, the CALIBRATE_START will be sent to the application. As calibration
progresses, the CALIBRATE_PROGRESS event informs the host. When the calibration is
completed, the CALIBRATE_FINISH event informs the application.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND

void EscrowReturn(void)

This function is used to return the document currently at escrow. This can only be done when
the state is ESCROW or PUP_ESCROW.

Exceptions(s)
INVALID_STATE

void EscrowStack(void)

This function is used to stack a document currently at escrow. This can only be done when the
state is ESCROW or PUP_ESCROW.

Exceptions(s)
INVALID_STATE

void FlashDownload(STRING file_path)

This function is used to start the process of updating the flash memory of the bill acceptor.
Progress in the download is signaled with the events DOWNLOAD_START,
DOWN_LOAD_PROGRESS and DOWNLOAD_FINISH.

Exception(s):
INVALID_STATE, FILE_NOT_FOUND, INVALID_FILE

void ClearCashBoxTotal(void)

This function is used to clear the count of bills stored in the cash box. This function may only be
called if the not DeviceBusy and CapCashBoxTotal.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND, INVALID_ARG

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 96 of 128

Copyright MEI © 2008, All Rights Reserved

void SetAssetNumber(STRING asset)

This function is used to set the asset number of the bill acceptor and the cash box. See section
7.5.4 for more details.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND, INVALID_ARG

void SpecifyEscrowTimeout(INT32 bill_timeout,
 INT32 barcode_timeout)

This function is used to specify the escrow timeout parameters in use by the bill acceptor.
There are two settings, one for bank notes and the other for bar codes. Both are in seconds
from 0 through 127 where 0 represents no timeout. See section 7.5.6 for more details.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND, INVALID_ARG

void SpecifyPupExt(CHAR pup_mode,
 PupExt pre_escrow,
 PupExt at_escrow,
 PupExt post_escrow,
 PupExt pre_stack)

This function is used to specify the parameters in use by the bill acceptor to recover from when
a bill is being processed during a power fail. See section 7.5.3 for more details.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND

void SetBezel(Bezel b)

This function is used to override the default bezel setting. Note that setting the bezel to the
wrong type may result in unpredictable bezel ooperation.

Exception(s):
INVALID_STATE, UNSUPPORTED_COMMAND

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 97 of 128

Copyright MEI © 2008, All Rights Reserved

9.1.16 M/POST for EBDS Acceptor Events Details:

Name Parameter Data Vers
CONNECTED none 1.00

This event is sent when the connection to the bill acceptor has been established.

Name Parameter Data Vers
DISCONNECTED none 1.00

This event is sent when the connection to the bill acceptor has been terminated or lost. For the
latter, see section 8.4.2 for more details on dealing with this event.

Name Parameter Data Vers
ESCROW none 1.00

This event is sent when a document reaches escrow. The doc_type parameter identifies the
type of document. It is important that all types of documents be processed, even if just to be
returned to the consumer. Stranding a document in Escrow can cause the bill acceptor to be
unable to accept further notes.

Name Parameter Data Vers
PUP_ESCROW DocType doc_type 1.00

This event is sent when a document is “found” at escrow during power up. The doc_type
parameter identifies the type of document. It is important that all types of documents be
processed, even if just to be returned to the consumer. Stranding a document in Escrow can
cause the bill acceptor to be unable to accept further notes.

Name Parameter Data Vers
STACKED DocType doc_type 1.00

This message is sent when a document is stacked. It is at this time that the application should
fix credit to the transaction. Any delivery of products and services should not proceed until this
event is signaled with adequate credit.

Name Parameter Data Vers
RETURNED none 1.00

This message is sent when a document is returned to the customer.

Name Parameter Data Vers
REJECTED none 1.00

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 98 of 128

Copyright MEI © 2008, All Rights Reserved

This message is sent when a document is rejected by the bill acceptor. See section 8.4.4 for
more details on dealing with this event.

Name Parameter Data Vers
CHEATED none 1.00

This message is sent when difficulty is encountered transporting a document that may have
been caused by a cheat attempt. See section 8.4.3 for more details on dealing with this event.
MEI does not offer a method to set / test cheat events.

Name Parameter Data Vers
CALIBRATE_START none 1.00

This message is sent when the calibration process is started and the user needs to insert the
calibration document.

Name Parameter Data Vers
CALIBRATE_PROGRESS none 1.00

This event signals that calibration is on going. See section 8.4.9 for more details on dealing with
this event.

Name Parameter Data Vers
CALIBRATE_FINISH none 1.00

This event signals that calibration has completed.

Name Parameter Data Vers
DOWNLOAD_START INT32 total_num 1.00

This event signals that the download of code has started and that total_num sectors need to be
sent to the bill acceptor.

Name Parameter Data Vers
DOWNLOAD_RESTART none 1.00

This event indicates that the bill acceptor power up in download mode. The host system needs
to restart the download process.

Name Parameter Data Vers
DOWNLOAD_PROGRESS INT32 sector_num 1.00

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 99 of 128

Copyright MEI © 2008, All Rights Reserved

This event signals that the flash download is on going and that sector_num sectors have been
sent.

Name Parameter Data Vers
DOWNLOAD_FINISH BOOLEAN success 1.00

This event indicates that the download has ended. The success parameter is true for success
and false for failure.

Name Parameter Data Vers
PAUSE_DETECTED none 1.00

This is sent when the bill acceptor is paused because the customer is feeding bills too quickly.
See section 8.4.8 for more details on dealing with this event.

Name Parameter Data Vers
PAUSE_CLEARED none 1.00

This is sent when the bill acceptor bill path is cleared by the customer. See section 8.4.8 for
more details on dealing with this event.

Name Parameter Data Vers
STALL_DETECTED none 1.00

This event is sent when the bill acceptor becomes stalled after an anti-jam effort. The bill
acceptor requires attention to resolve the jam. See section 8.4.13 for more details on dealing
with this event.

Name Parameter Data Vers
STALL_CLEARED none 1.00

This event is sent when the bill acceptor stall is cleared after operator intervention. The error
condition is cleared and the application can proceed.

Name Parameter Data Vers
JAM_DETECTED none 1.00

This event is sent when the bill acceptor detects a jam. The bill acceptor requires attention to
resolve the jam. See section 8.4.5 for more details on dealing with this event.

Name Parameter Data Vers
JAM_CLEARED none 1.00

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 100 of 128

Copyright MEI © 2008, All Rights Reserved

This event is sent when the bill acceptor jam is cleared, either automatically or after operator
intervention. The error condition is cleared and the application can proceed.

Name Parameter Data Vers
CASHBOX_REMOVED none 1.00

This event is sent when the cash box is removed from the bill acceptor. This should only
happen as part of regular procedures when the money is being collected. See section 8.4.7 for
more details on dealing with this event.

Name Parameter Data Vers
CASHBOX_INSTALLED none 1.00

This event is sent when the cash box is returned to the bill acceptor. This should only happen
as part of regular procedures when the money is being collected. See section 8.4.7 for more
details on dealing with this event.

Name Parameter Data Vers
POWER_UP none 1.00

This event is sent when the bill acceptor has powered up or been reset. See section 8.4.10 for
more details on dealing with this event.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 101 of 128

Copyright MEI © 2008, All Rights Reserved

10. M/POST Bindings for ActiveX
The goal of this section is to provide OLE specific information for developers in that
environment, especially developers using the Visual Basic 6 programming language.

10.1 Connecting to the M/POST DLL

Before you can use the M/POST OLE component from Visual Basic or another development
environment, the MPOST_OLE.dll must be registered. If you install M/POST OLE using the
installer program, the installer will register the DLL. If you do you use to installer but instead
simply copy MPOST_OLE.dll to your chosen directory, you will need to execute the command
line “regsvr32 MPOST_OLE.dll”. Depending upon the configuration of your sytem, you might
need to specify the full path for regsvr32.exe. This utility should be located in one of your
Windows directories.

Once MPOST_OLE.DLL is registered, you will need to add a reference to the component to
your Visual Basic project. To do this, select the References command from the Project menu
and select MPOST OLE 1.0 Type Library (the version number might be greater than 1.0).

After adding the reference, you will be able to declare and use an instance of the Acceptor
object or any of the other M/POST objects, enumerations or declarations.

10.2 Handling Events in Visual Basic 6

Visual Basic 6 makes it relatively simple to handle events sent by M/POST OLE, but you must
remember to declare the Acceptor object using the WithEvents keyword.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 102 of 128

Copyright MEI © 2008, All Rights Reserved

Public WithEvents Acceptor As MPOST_OLELib.Acceptor

When you do this, Visual Basic will add “Acceptor” to the object list (the drop-down list on the
left hand side above the text pane). If you select “Acceptor” from this list, you will see the list of
all supported events in the drop-down list on the right hand side.

Simply select the desired event from the list, and Visual Basic will automatically add a handler
subroutine for you.

Private Sub Acceptor_Connected()
‘Add your handler code here.

End Sub

10.3 Differences from the M/POST model

Due to the requirements of the OLE programming environment, some changes to the M/POST
model presented in section 9 were required. These changes are summarized below:

 To conform to convention, the OrientationCtrl property is called OrientationControl to match
the OrientationControl enumeration.

 For the BNFStatus Enumeration:

Model Value OLE Binding
Unknown BNFUnknown
Ok BNFOK
NotAttached BNFNotAttached
Error BNFError

 For the DocType Enumeration:

Model Value OLE Binding
None DocNone
NoValue DocNoValue
Bill DocBill
Barcode DocBarcode
Coupon DocCoupon

 The Orientation Enumeration

Model Value OLE Binding
RightUp RightUp
RightDown RightDown
LeftUp LeftUp
LeftDown LeftDown
Unknown OrientationUnknown

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 103 of 128

Copyright MEI © 2008, All Rights Reserved

 The PowerUp Enumeration

Model Value OLE Binding
A PUP_A
B PUP_B
C PUP_C
E PUP_E

10.4 A note on array index values.

For consistency with the M/POST model, arrays are zero-based, rather than one-based as is
the usual Visual Basic convention. Thus valid indexes run from 0 through N-1, rather than 1
through N for an array of N elements.

10.5 A note on Boolean property values.

For constancy with the M/POST model, Boolean property values use 0 for false and 1 for true,
This is different from VB6 custom. For simple testing of a property there is no impact, however
if more complex operations are required it will be necessary to compare the value with 1 as in
the following example:

If cint(Acceptor.Connected) = 0 Then ...

instead of

If NOT Acceptor.Connected Then ...

For greatest compatibility, only compare with 0. This way, if the M/POST library value for TRUE
should be changed, the application code will continue to run correctly. For example use

If cint(Acceptor.Connected) <> 0 Then ...

instead of

If cint(Acceptor.Connected) = 1 Then ...

because the latter will break if the value of TRUE is changed. The value of FALSE will always
be 0.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 104 of 128

Copyright MEI © 2008, All Rights Reserved

11. M/POST Bindings for .NET
The goal of this section is provided to supply .NET specific information for developers in that
environment.

11.1 Connecting to the M/POST DLL
The full release version of M/POST shall have a full install system. The Early Experience
version does not. In order to utilize M/POST is an application, it is necessary to copy the
MPOST.DLL file into the project folder and “Add a Reference” to it. Under the Project menu
entry:

And then browse for the DLL.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 105 of 128

Copyright MEI © 2008, All Rights Reserved

11.2 Handling M/POST Events in C#

When M/POST sends events to a C# application, they are handled with delegates. It is
recommended that delegates are declared as private data as shown below:

private EscrowEventHandler EscrowedDelegate;

and that it be connected to the handler as follows:

// Form Window Constructor Function.
public EBDS_Bill_Acceptor()
{

InitializeComponent();

// Initialize the deligates.
EscrowedDelegate = new EscrowEventHandler(HandleEscrowedEvent);
// Balance removed for clarity.

BillAcceptor.OnEscrow += EscrowedDelegate;
// Balance removed for clarity.

}

In the handler itself, the application programmer needs to deal with the fact that M/POST
events are sent from a worker thread. This means that:

a) The user interface is not directly accessible due it’s single threaded nature.
b) That if a command is sent, or a property is accessed, directly from the same thread, the

system could lock up in a “deadly embrace”.

To resolve both of these problems, always use the .NET Invoke mechanism to process events.
This is shown below:

private void HandleEscrowedEvent(object sender, EventArgs e)
{

if (InvokeRequired)
{

BeginInvoke(EscrowedDelegate, new object[] { sender, e });
}
else
{

// Event handling code goes here!
}

}

If the receiver of events is not a kind of form window, it will need access to a form window or
other window control for this to work. For example:

private void HandleEscrowedEvent(object sender, EventArgs e)
{

if (MainWin.InvokeRequired)
{

MainWin.BeginInvoke(EscrowedDelegate, new object[] { sender, e });
}
else
{

// Event handling code goes here!
}

}

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 106 of 128

Copyright MEI © 2008, All Rights Reserved

11.3 Handling M/POST Events in VB.NET

When M/POST sends events to a VB.NET application, they are handled with delegates. It is
recommended that delegates are declared as private data as shown below:

Private EscrowedDelegate As EscrowEventHandler

and that it be connected to the handler as follows:

' Form Window Constructor Function.
Public Sub New()

InitializeComponent()

' Initialize the deligates.
EscrowedDelegate = New EscrowEventHandler(AddressOf HandleEscrowedEvent)
' Balance removed for clarity.

' Connect to the events.
AddHandler BillAcceptor.OnEscrow, EscrowedDelegate
' Balance removed for clarity.

End Sub

In the handler itself, the application programmer needs to deal with the fact that M/POST
events are sent from a worker thread. This means that:

c) The user interface is not directly accessible due it’s single threaded nature.
d) That if a command is sent, or a property is accessed, directly from the same thread, the

system could lock up in a “deadly embrace”.

To resolve both of these problems, always use the .NET Invoke mechanism to process events.
This is shown below:

Private Sub HandleEscrowedEvent(ByVal sender As Object, ByVal e As EventArgs)
If InvokeRequired Then

BeginInvoke(EscrowedDelegate, New Object() { sender, e })
Else

' Event handling code goes here!
End If

End Sub

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 107 of 128

Copyright MEI © 2008, All Rights Reserved

12. M/POST Bindings for Linux
The goal of this section is provided to supply Linux specific information for developers in that
environment.

12.1. Using the MPOST_Linux Library

To install the M/POST Linux library, simply uncompress the archive MPOST_Linux.tar.gz.

You will need to build the library and, if desired, the demo program. These projects were
created with Eclipse. If you have Eclipse, simply import the projects into your workspace and
build.

If you do not have Eclipse, you can either create corresponding projects in the IDE you are
using, or you can build from the command line. It is possible that the makefiles in the Debug
and Release directories will work. If not, you will need to compile the files using gcc or another
C++ compiler. In order to build the MPOST_Linux_Demo project, you will need additional
project settings, described below.

The C++ project MPOST_Linux is configured to produce a static library named MPOST_Linux
(actual filename libMPOST_Linux.a).

All of the M/POST functions you will need to access are located in the class CAcceptor. To
access these functions, #include the header file Acceptor.h. For convenience, you should also
add the following statement:

using namespace MPOST;

The M/POST documentation in this manual was originally written for the C# language. In some
cases there might be differences in syntax for calling functions. Refer to the header file
Acceptor.h for exact naming and syntax of functions and enumerations.

12.2. Handling M/POST Events in Linux

In order to handle a CAcceptor event, first define a function with the following signature:

void EventHandler(CAcceptor*, int);

Note that the int parameter is only used by the DownloadStart and DownloadProgress events.

Set the event handler with a statement like the following:

acceptor->SetEventHandler(ConnectedEvent, ConnectedEvenrHandler);

At present, each event may only have one handler.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 108 of 128

Copyright MEI © 2008, All Rights Reserved

12.3. MPOST Linux Demo Program

We include in addition to the M/POST Linux library a demo program that you can use to verify
that M/POST is working correctly and as sample code showing how the library is used.

The most complete version of the demo program (includes samples of most functions) is a GUI
application using GTK. If you do not have GTK available, you can still refer to the demo source
for samples of calling CAcceptor functions. Additionally, you can build a limited command-line
version. Refer to the file MPOST_Linux_Demo/main.cpp for more information.

If you do build using GTK and use Eclipse, the project files provide contain the correct libraries
and directories. If you build from the command line, you will have to tell the compile to look for
the following include directories:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 109 of 128

Copyright MEI © 2008, All Rights Reserved

13. M/POST Bindings for JAVA
A Java binding for M/POST is not planned at this time. To inquire as to any change in this
policy please see the MEI web site at www.meiglobal.com.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 110 of 128

Copyright MEI © 2008, All Rights Reserved

14. The M/POST Demo Program
The various versions of M/POST all ship with a demo program that serves multiple purposes:

1. It is a test bed for validating the customer installation of the hardware and software.
2. It is a useful vehicle for familiarizing application developers with the capabilities of the bill

acceptor hardware and the library software.
3. The source code provides examples of the handling of events and other coding tasks

required of the application developer.
4. The demo program served as a test bed for developing, test and debugging the library

While there will be several different versions of the demo program, all will be based on and
similar to the .NET demo program presented here. Where significant differences occur, they will
be highlighted in the text.

14.1 The Launcher

The launcher screen is the initial window displayed by the application. It is shown below:

In this simple dialog box, the controls are used as follows:
• The combo-box on the left contains a list of available ports.
• The Launch Control Panel button opens a control panel on the com port selected in the

combo-box.
• The Refresh Port List button updates the combo-box for cases when ports are added on the

fly (e.g. plugging in a USB port or device).
• The Exit Application button exits the application. There was an effort made to make this

seem more dramatic, but it sorta fell through.

Note that in the second text bar from the bottom, the version and part number of the M/POST
DLL are displayed. When reporting issues or requesting help, it is important to reference this
part number. The bottom text bar is a reminder that this is MEI code and not public domain.
Finally the background bitmap is meant to be suggestive of the general topic of the program.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 111 of 128

Copyright MEI © 2008, All Rights Reserved

14.2 The Control Panel

The control panel for an EBDS bill acceptor is a multi-tabbed dialog box that permits a great
deal of control and provides detailed information on the attached bill acceptor. When the control
panel is first displayed, it is in the Main tab, and while the panel is open, the connection to the
bill acceptor is not. This is illustrated below.

In this condition there is not much that can be done.
• The Open button opens a the connection to the bill acceptor.
• The Close button closes the control panel
• The PUP Mode combo-box is used to select the Power Up Protocol to be employed while

opening the connection. See sections 6.1 and 7.1.1 for more details on the various PUP
modes. PUP modes may only be selected BEFORE the connection to the device is opened.
The combo-box is illustrated below:

Once the connection to the device is established, the full range of options opens up.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 112 of 128

Copyright MEI © 2008, All Rights Reserved

14.2.1 The Main Tab

The main tab is used for the majority of bill operations. From this panel, the processing of
documents may be seen. This panel is shown below:

• The Events area is used to display commands sent to and events received from the bill
acceptor object. The list of events scrolls as needed.

• The Save Log As button may be used to save the contents of the Events list in a text file.
• The Clear Log button erases the contents of the Events list.
• The Stack button is only enabled when there is a document in the bill acceptor awaiting a

decision. If this button is clicked, the bill will be placed into the cash box.
• The Return button is only enabled when there is a document in the bill acceptor awaiting a

decision. If this button is clicked, the bill will be returned to the consumer.
• The Calibrate button is used to initiate a field calibration procedure. During this procedure, a

device specific calibration document is fed into the unit and analyzed to adjust the internal
settings of the unit. Since it is crucial that the correct calibration document be used, the
program then verifies this in the following pop-up:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 113 of 128

Copyright MEI © 2008, All Rights Reserved

If YES is selected then the following dialog appears for the duration of the calibration process.

• The Download button is used to initiate an update of the code contained within the bill
acceptor. When selected it first requires the selection of a file to load into the device. This is
accomplished in the following dialog:

Once the file is selected, a progress dialog plots the progress of the exercise. This is shown
below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 114 of 128

Copyright MEI © 2008, All Rights Reserved

Note that download progress is tracked by both the download bar and the Event list in the main
tab. When the download process is finally completed, the following is displayed:

Should the download fail, a download failed button is presented instead.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 115 of 128

Copyright MEI © 2008, All Rights Reserved

14.2.2 The Capabilities Tab

The capabilities tab is used to display the results of the M/POST capability survey of the bill
acceptor. Each line in this table corresponds to a Boolean capability property described in
sections 9.1.1 and 9.1.13. The value check box reflects the state of the capability. Checked
being available and unchecked being not available. The value field is not editable. To help
understand the nature of each capability, a description is provided as well. A sample
capabilities table is shown below:

14.2.3 The Properties Tab

The properties tab is used to control the user modifiable properties of the bill acceptor. The
properties are discussed further in sections 9.1.1 and 9.1.13. Properties that are “grayed out”
are not supported by the current bill acceptor. A sample properties dialog is shown below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 116 of 128

Copyright MEI © 2008, All Rights Reserved

• The Enable Acceptance check box corresponds to the EnableAcceptance property. It
controls the acceptance of all sorts of documents. Setting this property is the correct way to
control device activity (abusing the open and close methods is the wrong way).

• The Auto Stack check box corresponds to the AutoStack property. When set, documents
are stacked, bypassing the escrow event. When cleared, the escrow event is generated. In
the demo, the disposition of the bill is then controlled by the Stack and Return buttons on
the Main tab.

• The Bar Code Vouchers check box corresponds to the EnableBarCodes property. It
controls the acceptance of bar coded vouchers.

• The Bookmarks check box corresponds to the EnableBookmarks property. It controls the
acceptance of bookmark slips.

• The Extended Coupon check box corresponds to the EnableCouponExt property. When
selected, generic coupons are reported in greater detail.

• The No Push Mode check box corresponds to the EnableNoPush property. When selected,
the bill acceptor will go out of service rather than stack a bill to recover from a jam. Operator
intervention will be required to clear the jam.

• The High Security Mode check box corresponds to the HighSecurity property. When set,
stricter standards are used in the evaluation of documents. Note that while all bill acceptors
accept this option, few act on it.

• The Soft Reset button is used to send a SoftReset command to the bill acceptor. This
command is discussed in sections 9.1.10 and 9.1.13. There will a delay of several seconds
while the bill acceptor performs this action.

• The Orientation Control area is used to control the orientation of accepted notes. The first
orientation control combo-box corresponds to the basic orientation control capability. This is

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 117 of 128

Copyright MEI © 2008, All Rights Reserved

described in section 8.2.4. The second orientation control combo-box corresponds to the
extended orientation control capability. This is described in section 8.2.5.

• The escrow timeouts for bills and barcode documents may be set in the Escrow Timeout
Control area. The timeouts for bills and barcodes are dialed in with the appropriate spin
boxes and the setting sent to the bill acceptor with the Set Timeouts button.

• The Bezel Control area is used to override the bill acceptor bezel setting.
• The Raw Command area allows arbitrary hex values to be entered and sent to the bill

acceptor. The data is entered with the STX, Length, ETX and Check value omitted. To send
the command, either hit Enter while the focus is in the command area or click on the Send
button. The Raw Reply area shows the complete reply packet.

• The Debug Log check box corresponds to the DebugLog property. When enabled, a log of
all traffic is written to the folder listed in the text area to the right. The text area corresponds
to the DebugLogPath property. The button labeled “...” to the right of the text area is used to
select a folder to place the log in. Note that selecting a new folder while the log is active has
no effect. The folder must be selected before the log is started. It is allowed to start logging
on a connection that is not yet open. When the connection is opened, logging will begin
immediately. Be advised that logging can consume a great deal of system resources and
disk space and should be used with care.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 118 of 128

Copyright MEI © 2008, All Rights Reserved

14.2.4 The Bill Set Tab

The bill set tab is used to display the complete bill set supported by the bill acceptor and
corresponds to the BillTypes and BillTypeEnables properties. The enable check boxes permit
fine control over exactly what sorts of bills are accepted. An example of the bill types tab is
shown below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 119 of 128

Copyright MEI © 2008, All Rights Reserved

14.2.5 The Bill Values Tab

The bill set tab is used to display a summarized version of the bill set supported by the bill
acceptor and corresponds to the BillValues and BillValueEnables properties. The enable check
boxes permit easy control over exactly what denominations of bills are accepted.

Note that while changes in this tab are reflected in the Bill Types tab, changes in the Bill Types
tab do not reflect in this tab. Thus it is recommended that only one tab be used to control the
acceptance of bills. An example of the bill values tab is shown below:

Note: On bill acceptors that do not support expanded note reporting, the bill types tab and bill
values tab contain the same data.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 120 of 128

Copyright MEI © 2008, All Rights Reserved

14.2.6 The Device Info Tab

The last tab is the device info tab. This tab contains a great deal of detailed information about
the bill acceptor. These various fields are populated according to the capability of the device to
report the requested information. Where fields are not available the text “Not Supported”
appears instead of the data. The refresh all button updates this tab with fresh information. A
sample of the device info tab appears below:

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 121 of 128

Copyright MEI © 2008, All Rights Reserved

15. Device Harness and Connection

15.1 EBDS Harness Options for the Series 2000 Bill Acceptor:

There are two main harness options for the Series 2000 Bill Acceptor. These are the RS232
harness and the USB harness. These options may be

250078075P – RS232 SERIES 2000 INTERFACE CABLE
250079066P1 – SERIES 2000 USB INTERFACE HARNESS

14.1.1 Custom Harness Design for the Series 2000 Bill Acceptor:

In some cases, it may be desired to avoid intermediary cables or harnesses. In these cases a
custom cable must be fabricated to interface directly to the Series 2000 unit. The specifications
for this connection are shown below:

The Series 2000, 30 pin connector

12 pin power sub-connector 18 pin communications sub-connector

T A B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

EBDS Data Connections:

Pin 10 – Signal Ground.
Pin 11 – Inverted TTL Serial Data to the Host.
Pin 25 – +5 V DC through a 200 ohm resister.
Pin 26 – Inverted TTL Serial Data from the Host.

Type of Bill AcceptorPower sub-
connector pin 115V AC 24V AC/DC 12V DC

3 24V Hot
4 115 VAC Neutral
5 Key Key
6 Key

16 12 VDC “–“ Neutral
19 Key 12 VDC “+” Hot
20 115 VAC Hot 24V Neutral
21 Earth Ground Key Key

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 122 of 128

Copyright MEI © 2008, All Rights Reserved

15.2 EBDS Harness Options for the Cashflow-SC Bill Acceptor:

The various models of the Cashflow-SC support EBDS through a number of interfaces. These
are controlled by the model number of the unit ordered. For ordering information, contact MEI
Sales directly.

14.2.1 RS-232 Harness Configuration:

The RS-232 versions of the Cashflow-SC employ a 12 pin Molex style connector shown below.

The pin-outs of this cable are specified below:

CASHFLOW SC 12 Pin Block Connector Pin-out for RS232 EBDS version

Connector Pin # Wire Color Signal
1 White External Inhibit
2 Gray Bezel LED Drive
3 Not Populated
4 Yellow Out of Service
5 Blue Ground 2
6 Pink RS232 EBDS RXD1

7 Blue Power Supply Return 2

8 Purple Led Supply
9 Not Populated

10 Not Populated
11 Green Power Supply 3

12 Tan RS232 EBDS TXD1

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 123 of 128

Copyright MEI © 2008, All Rights Reserved

NOTES: 1 RXD is an input to the note acceptor. TXD is an output. All signals are
 true RS-232 levels.
2 Pins 7 and 5 are tied with a loop of wire in back of the 12-pin connector.
3 The power supply should be rated for 24 volts and 72 watts over the
 entire temperature range of the system.

15.2.2 USB Harness Configuration:

The USB versions of the Cashflow-SC utilize two harnesses. The first is the conventional 12 pin
Molex connection and the second is a USB “B” type connector for data communications with
the host system.

CASHFLOW SC 12 Pin Block Connector Pin-out for USB EBDS version

Connector Pin # Wire Color Signal
1 White External Inhibit
2 Gray Bezel LED Drive
3 Not Populated
4 Yellow Out of Service
5 Blue Ground1

6 Not Populated
7 Blue Power Supply Return1

8 Purple Led Supply
9 Not Populated

10 Not Populated
11 Green Power Supply 2

12 Not Populated

NOTES: 1 Pins 7 and 5 are tied with a loop of wire in back of the 12-pin connector.
2 The power supply should be rated for 24 volts and 72 watts over the
 entire temperature range of the system.

CASHFLOW SC Pin-out for USB “B” Socket.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 124 of 128

Copyright MEI © 2008, All Rights Reserved

15.3 Legacy, Series (ZT) 1000 Harness Options

The series 1000 harness is a 12 pin connector similar to that used on the Cashflow-SC product
line. The following table summarizes EBDS harness options for the Series 1000 bill acceptor
product line. This data is provided for informational purposes only.

INTERFACE SIGNALS
RTU Harness # 251076029

Yellow Jacket
RTU Harness # 251072043

Red Jacket
RTU Harness # 251071030

Blue Jacket
Product - ZT1207 Products – ZT1202, ZT1204 Product - ZT1201Connector

Pin #
Wire

Color Interfaces:
NISR / RS232 EBDS

Interfaces:
IGT® Netplex, IGT® Pulse,

Opto-isolated EBDS

Interface:
Opto-isolated EBDS

1 White CASSETTE PRESENT Aux. A ----
2 Gray BEZ_LED_OUT LED- Aux. B
3 Red NISR_SEND Vopt Vopt
4 Yellow OUT_OF_SERVICE Vret Vret
5 Blue GROUND GROUND GROUND
6 Pink RS232 RXD Isolated Reset Isolated Reset
7 Black NISR_INTERRUPT Aux. B ----
8 Purple LED_SUPPLY LED+ Aux. C
9 Brown TXD/CREDIT TXD TXD

10 Orange OPT_RXD/ACC_EN RXD RXD
11 Green POWER POWER POWER
12 Tan RS232 TXD ---- Aux. A

15.4 Legacy, Series 3000 Harness Options

There is one main harness option for the Series 3000 Bill Acceptor. This is a RS232 harness:

111633139 – SERIES 3000 RS232 INTERFACE BOARD KIT

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 125 of 128

Copyright MEI © 2008, All Rights Reserved

Direct connection, without the use of a harness is not recommended or supported. Power to the
Series 3000 unit is provided by a nine-pin harness. This harness and its configuration are
shown below:

Type of Bill AcceptorPower
connector pin 115V AC 24V AC

4 115 VAC Hot
5 24VAC Hot
6 115 VAC Neutral 24 VAC Neutral

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 126 of 128

Copyright MEI © 2008, All Rights Reserved

This page intentionally left blank.

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 127 of 128

Copyright MEI © 2008, All Rights Reserved

16. Quick Reference
Controller's Message

STX (0x02)

Length (0x08)

Description "1" Indicates
Message Type / Ack

Bit 0 Message Sequence Toggles
Bit 1-3 Reserved – Always 0
Bit 4-6 Message Type (See Below)

High Nibble Type
0x Reserved
1x Standard Host Command
2x Standard Device Reply
3x Host Command + Bookmark
4x Calibrate Request
5x Flash Download Request
6x Auxiliary Commands
7x Extended Message Set

Byte 0
Bit 0 Denom 1 Accept Enable Enable
Bit 1 Denom 2 Accept Enable Enable
Bit 2 Denom 3 Accept Enable Enable
Bit 3 Denom 4 Accept Enable Enable
Bit 4 Denom 5 Accept Enable Enable
Bit 5 Denom 6 Accept Enable Enable
Bit 6 Denom 7 Accept Enable Enable

Byte 1
Bit 0 Special Interrupt Mode Mode Enabled
Bit 1 High Security Enabled
Bit 2-3 Bill Orientation Enable (See table below)

Bit 3 2 Orientation
0 0 1 Way
0 1 2 Way
1 x 4 Way

Bit 4 Escrow Mode Escrow Enabled
Bit 5 Stack Command Bit Stack the Bill
Bit 6 Return Command Bit Return the Bill

Byte 2
Bit 0 Push/No Push Modes No Push Mode
Bit 1 Decode Bar Codes Enable
Bit 2 Power Up B Sequence Enable
Bit 3 Power Up C Sequence Enable
Bit 4 Expanded Bill Set Enable
Bit 5 Expanded Coupon Enable
Bit 6 Currently 0 RFU

ETX (0x03)

CheckSum

W a r n i n g
A n y R F U f i e l d s m a y b e c h a n g e d a t a n y t i m e .

Acceptor's Message
STX (0x02)

Length (0x0B)

Message Type / Ack (see controller description)

Description "1" Indicates
Byte 0

Bit 0 Idling Waiting for a Bill.
Bit 1 Accepting Taking a Bill
Bit 2 Escrowed Bill is in Escrow
Bit 3 Stacking Stacker is moving
Bit 4 Stacked Bill was Stacked
Bit 5 Returning Returning a Bill
Bit 6 Returned Bill was Returned

Byte 1
Bit 0 Cheated A cheat was detected
Bit 1 Rejected Bill was Rejected
Bit 2 Jammed Bill is Jammed
Bit 3 Stacker Full Stacker is Full
Bit 4 LRC Status LRC Installed
Bit 5 Paused Acceptor is Paused
Bit 6 Calibration Acceptor is Calibrating

Byte 2
Bit 0 Power Up The device was reset
Bit 1 Invalid Command Bad command from host
Bit 2 Failure Out of Service
Bit 3-5 Bit 5 4 3 Bill Value / Denom

0x00 0 0 0 None/No value
0x08 0 0 1 Denom 1
0x10 0 1 0 Denom 2
0x18 0 1 1 Denom 3
0x20 1 0 0 Denom 4
0x28 1 0 1 Denom 5
0x30 1 1 0 Denom 6
0x38 1 1 1 Denom 7

Bit 6 Currently 0 RFU

Byte 3
Bit 0 Push/No Push Acceptor is stalled.
Bit 1 Flash Download Starting Flash D/L.
Bit 2 Pre-stack Obsolete
Bit 3 Raw barcode Supports 24 byte codes
Bit 4 Device Caps Allows QryDeviceCaps
Bit 5-6 Currently 0 RFU

Byte 4
All Model # (00-7FH)

Byte 5
All Code Revision (00-7FH)

ETX (0x03)

CheckSum

REF 20105-002850131-PSApplicable
Site(s) West Chester

PCN 500000008441

Issue G2
Subject Retail – EBDS Protocol Specification

(with M/POST for EBDS) Page 128 of 128

Copyright MEI © 2008, All Rights Reserved

17. Hex/Binary and ASCII Data Conversion
When developing a host in an higher level language, one is often isolated from the low level
“bits” of the protocol. The following table facilitates the decoding of the seven bit data contained
in an EBDS data stream. The low and high hex digits may be translated into the appropriate bit
positions. This in turn facilitates looking up fields in the various sections of this specification.

Digit Hex→ 0 1 2 3 4 5 6 7 8 9 A B C D E F

Bit 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Bit 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Bit 2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1Low

Bit 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Bit 4 0 1 0 1 0 1 0 1
Bit 5 0 0 1 1 0 0 1 1High
Bit 6 0 0 0 0 1 1 1 1

Since many EBDS packets contain ASCII data, this Hex to ASCII conversion table is provided
to ease the interpretation of transaction logs.

H/L 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Notes: Entry 20 is a space character. Entries in italics are non-printable control codes.

